Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data.

Directivas de Aves y Hábitats European protection network abundancia de especies birds and habitats directives breeding bird survey butterfly monitoring schemes censo de aves reproductoras especialización de hábitat esquemas de monitoreo de mariposas habitat specialization red europea de protección species abundance 欧洲保护网络 物种丰度 生境特化 繁殖鸟种调查 蝴蝶监测计划 鸟类及生境指令

Journal

Conservation biology : the journal of the Society for Conservation Biology
ISSN: 1523-1739
Titre abrégé: Conserv Biol
Pays: United States
ID NLM: 9882301

Informations de publication

Date de publication:
06 2020
Historique:
received: 23 11 2018
revised: 21 10 2019
accepted: 30 10 2019
pubmed: 9 11 2019
medline: 27 10 2020
entrez: 9 11 2019
Statut: ppublish

Résumé

The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites. Efectos de Natura 2000 sobre las Especies No Focales de Aves y Mariposas con Base en Datos de Ciencia Ciudadana Resumen La red Natura 2000 (N2000) de la Unión Europea está entre las redes internacionales más grandes de áreas protegidas. Uno de sus objetivos es asegurar el estado de un conjunto predeterminado de especies de aves y mariposas (focales). Sin embargo, las especies no focales también pueden beneficiarse con la N2000. Evaluamos cómo el componente terrestre de esta red afecta la abundancia de las especies de aves y mariposas no focales más comunes con base en los datos de programas de monitoreo voluntario a largo plazo en 9,602 sitios para aves y en 2,001 sitios para mariposas. En casi la mitad de las 155 especies de aves evaluadas, particularmente entre aquellas especies especialistas en zonas boscosas, la abundancia incrementó (los estimaciones de la pendiente variaron desde 0.101 [DS 0.042] hasta 3.51 [DS 1.30]) conforme incrementó la proporción del paisaje cubierto por sitios de la N2000. Esta relación positiva existió en 27 de las 104 especies de mariposas (con una variación de estimaciones desde 0.382 [DS 0.163] hasta 4.28 [DS 0.768]), aunque la mayoría de las especies de mariposas fueron generalistas. Cuando se consideraron las covarianzas de cobertura de suelo estas relaciones positivas no fueron evidentes para la mayoría de las especies, lo que significa que la cobertura de suelo puede ser una determinante de los efectos positivos de la red N2000. El incremento en la abundancia conforme aumentó la cobertura de la N2000 estuvo correlacionado con el índice de especialización de las aves, pero no el de las mariposas. Aunque la red N2000 sostiene la abundancia alta de un espectro amplio de especies, el bajo número de mariposas especialistas con una asociación positiva a la red N2000 demuestra la necesidad de mejorar la calidad del hábitat de los sitios N2000 que podrían albergar a mariposas especialistas de campo abierto. Para un mejor entendimiento de los procesos involucrados, promovemos una recolección estandarizada de datos en los sitios de la red N2000. 欧盟的 Natura 2000(N2000) 是全球最大的保护地网络之一, 它的目标之一是保护一批目标鸟类和蝴蝶物种的现状。不过, 非目标物种也可能从 N2000 中获益。本研究评估了该网络陆地保护区如何影响更为常见的非目标鸟类和蝴蝶的丰度, 所用数据来自长期的志愿者监测项目, 包括了 9602 个鸟类监测点和 2001 个蝴蝶监测点。在评估的 155 种鸟类中, 几乎一半的鸟类, 特别是林地专性种, 在 N2000 位点覆盖的景观比例上升时数量增加 (斜率估计值在 0.101 [SD 0.042] 到3.51 [SD 1.30] 之间) 。虽然大多数蝴蝶都是广幅种, 但 104 种蝴蝶中也有 27 种存在这种正相关关系 (斜率估计值在 0.382 [SD 0.163] 到 4.28 [SD 0.768]) 。对于大多数物种来说, 当考虑土地覆盖协变量时, 这样的正相关关系并不明显, 这意味着土地覆盖可能是 N2000 网络能否对物种产生积极影响的关键因素。物种的丰度随着 N2000 覆盖度增加而增加的现象与鸟类的生境特化指数相关, 而在蝴蝶中则无关。虽然 N2000 网络使许多物种得以维持较高丰度, 但获得其积极影响的蝴蝶专性种数量仍较少, 这说明需要在 N2000 网络中提高专性生活在开阔地的蝴蝶的生境质量。为了更好地理解其中的过程, 我们建议收集更多标准化的 N2000 位点数据。 【翻译: 胡怡思; 审校: 聂永刚】.

Autres résumés

Type: Publisher (spa)
Efectos de Natura 2000 sobre las Especies No Focales de Aves y Mariposas con Base en Datos de Ciencia Ciudadana Resumen La red Natura 2000 (N2000) de la Unión Europea está entre las redes internacionales más grandes de áreas protegidas. Uno de sus objetivos es asegurar el estado de un conjunto predeterminado de especies de aves y mariposas (focales). Sin embargo, las especies no focales también pueden beneficiarse con la N2000. Evaluamos cómo el componente terrestre de esta red afecta la abundancia de las especies de aves y mariposas no focales más comunes con base en los datos de programas de monitoreo voluntario a largo plazo en 9,602 sitios para aves y en 2,001 sitios para mariposas. En casi la mitad de las 155 especies de aves evaluadas, particularmente entre aquellas especies especialistas en zonas boscosas, la abundancia incrementó (los estimaciones de la pendiente variaron desde 0.101 [DS 0.042] hasta 3.51 [DS 1.30]) conforme incrementó la proporción del paisaje cubierto por sitios de la N2000. Esta relación positiva existió en 27 de las 104 especies de mariposas (con una variación de estimaciones desde 0.382 [DS 0.163] hasta 4.28 [DS 0.768]), aunque la mayoría de las especies de mariposas fueron generalistas. Cuando se consideraron las covarianzas de cobertura de suelo estas relaciones positivas no fueron evidentes para la mayoría de las especies, lo que significa que la cobertura de suelo puede ser una determinante de los efectos positivos de la red N2000. El incremento en la abundancia conforme aumentó la cobertura de la N2000 estuvo correlacionado con el índice de especialización de las aves, pero no el de las mariposas. Aunque la red N2000 sostiene la abundancia alta de un espectro amplio de especies, el bajo número de mariposas especialistas con una asociación positiva a la red N2000 demuestra la necesidad de mejorar la calidad del hábitat de los sitios N2000 que podrían albergar a mariposas especialistas de campo abierto. Para un mejor entendimiento de los procesos involucrados, promovemos una recolección estandarizada de datos en los sitios de la red N2000.
Type: Publisher (chi)
欧盟的 Natura 2000(N2000) 是全球最大的保护地网络之一, 它的目标之一是保护一批目标鸟类和蝴蝶物种的现状。不过, 非目标物种也可能从 N2000 中获益。本研究评估了该网络陆地保护区如何影响更为常见的非目标鸟类和蝴蝶的丰度, 所用数据来自长期的志愿者监测项目, 包括了 9602 个鸟类监测点和 2001 个蝴蝶监测点。在评估的 155 种鸟类中, 几乎一半的鸟类, 特别是林地专性种, 在 N2000 位点覆盖的景观比例上升时数量增加 (斜率估计值在 0.101 [SD 0.042] 到3.51 [SD 1.30] 之间) 。虽然大多数蝴蝶都是广幅种, 但 104 种蝴蝶中也有 27 种存在这种正相关关系 (斜率估计值在 0.382 [SD 0.163] 到 4.28 [SD 0.768]) 。对于大多数物种来说, 当考虑土地覆盖协变量时, 这样的正相关关系并不明显, 这意味着土地覆盖可能是 N2000 网络能否对物种产生积极影响的关键因素。物种的丰度随着 N2000 覆盖度增加而增加的现象与鸟类的生境特化指数相关, 而在蝴蝶中则无关。虽然 N2000 网络使许多物种得以维持较高丰度, 但获得其积极影响的蝴蝶专性种数量仍较少, 这说明需要在 N2000 网络中提高专性生活在开阔地的蝴蝶的生境质量。为了更好地理解其中的过程, 我们建议收集更多标准化的 N2000 位点数据。 【翻译: 胡怡思; 审校: 聂永刚】.

Identifiants

pubmed: 31701577
doi: 10.1111/cobi.13434
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

666-676

Informations de copyright

© 2019 Society for Conservation Biology.

Références

Billeter R, et al. 2008. Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology 45:141-150.
BirdLife International. 2018. IUCN Red List for bird species. Available from www.birdlife.org (accessed July 2018).
BirdLife International, NatureServe. 2013. Bird species distribution maps of the world. Version 3.0. BirdLife International, Cambridge, United Kingdom and NatureServe, Arlington, Virginia.
Bladt J, Larsen FW, Rahbek C. 2008. Does taxonomic diversity in indicator groups influence their effectiveness in identifying priority areas for species conservation? Animal Conservation 11:546-554.
Bridge TCL, Grech AM, Pressey RL. 2016. Factors influencing incidental representation of previously unknown conservation features in marine protected areas. Conservation Biology 30:154-165.
Dennis EB, Freeman SN, Brereton T, Roy DB. 2013. Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods in Ecology and Evolution 4:637-645.
Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villéger S, Mouquet N. 2010. Defining and measuring ecological specialization. Journal of Applied Ecology 47:15-25.
Donald PF, Sanderson FJ, Burfield IJ, Bierman SM, Gregory RD, Waliczky Z. 2007. International conservation policy delivers benefits for birds in Europe. Science 317:810-813.
EEA (European Environmental Agency). 2012a. Natura 2000 data - the European network of protected sites. European Union, Brussels, Belgium. Available from https://www.eea.europa.eu/data-and-maps/data/natura-2 (accessed January 2014).
EEA (European Environmental Agency). 2012b. Corine land cover 2006 raster data. European Union, Brussels, Belgium. Available from https://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2 (accessed January 2014).
EEA (European Environmental Agency). 2015. The state of nature in the European Union - results from reporting under the nature directives 2007-2012. European Union, Brussels, Belgium.
EEA (European Environmental Agency). 2016. Biogeographical regions. European Union, Brussels, Belgium. Available from https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed July 2018).
Evans D. 2012. Building the European Union's Natura 2000 network. Nature Conservation 1:11-26.
Gaston KJ. 2010. Valuing common species. Science 327:154-155.
Gaston KJ. 2011. Common ecology. BioScience 61:354-362.
Hallmann CA, etal. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12(e0185809) https://doi.org/10.1371/journal.pone.0185809.
Hochkirch A, et al. 2013. Europe needs a new vision for a Natura 2020 network. Conservation Letters 6:462-467.
Ibisch PL, Hoffmann MT, Kreft S, Pe'Er G, Kati V, Biber-Freudenberger L, DellaSala DA, Vale MM, Hobson PR, Selva N. 2016. A global map of roadless areas and their conservation status. Science 354:1423-1427.
Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D. 2006. Spatial segregation of specialists and generalists in bird communities. Ecology Letters 9:1237-1244.
Kadlec T, Štrobl M, Hanzelka J, Hejda M, Reif J. 2018. Changes in community composition of nocturnal Lepidoptera caused by different habitat structure of native and invaded forests. Biodiversity and Conservation 27:2661-2680.
Kati V, Hovardas T, Dieterich M, Ibisch PL, Mihok B, Selva N. 2014. The challenge of implementing the European network of protected areas Natura 2000. Conservation Biology 29:260-270.
Konvicka M, Benes J, Cizek O, Kopecek F, Konvicka O, Vitaz L. 2008. How too much care kills species: grassland reserves, agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. Journal of Insect Conservation 12:519-525.
Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M. 2011. Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz e.V., , Halle, Germany.
Kukkala AS, Santangeli A, Butchart SHM, Maiorano L, Ramirez I, Burfield IJ, Moilanen A. 2016. Coverage of vertebrate species distributions by Important Bird and Biodiversity Areas and Special Protection Areas in the European Union. Biological Conservation 202:1-9.
Le Viol I, Jiguet F, Brotons L, Herrando S, Lindström A, Pearce-Higgins JW, Reif J, Van Turnhout C, Devictor V. 2012. More and more generalists: two decades of changes in the European avifauna. Biology Letters 8:780-782.
Lecomte JB, Benoît HP, Ancelet S, Etienne MP, Bel L, Parent E. 2013. Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume. Methods in Ecology and Evolution 4:1159-1166.
Lisón F, Palazón JA, Calvo JF. 2013. Effectiveness of the Natura 2000 Network for the conservation of cave-dwelling bats in a Mediterranean region. Animal Conservation 16:528-537.
Lisón F, Sánchez-Fernández D, Calvo JF. 2015. Are species listed in the Annex II of the Habitats Directive better represented in Natura 2000 network than the remaining species? A test using Spanish bats. Biodiversity and Conservation 24:2459-2473.
Maes D, Collins S, Munguira ML, Šašić M, Settele J, van Swaay C, Verovnik R, Warren M, Wiemers M, Wynhoff I. 2013a. Not the right time to amend the annexes of the European habitats directive. Conservation Letters 6:468-469.
Maes J, et al. 2013b. Mapping and Assessment of Ecosystems and their Services. An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020. European Commission, Brussels, Belgium.
Maiorano L, Amori G, Montemaggiori A, Rondinini C, Santini L, Saura S, Boitani L. 2015. On how much biodiversity is covered in Europe by national protected areas and by the Natura 2000 network: insights from terrestrial vertebrates. Conservation Biology 29:986-995.
Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253.
Milieu, IEEP, and ICF. 2016. Evaluation study to support the fitness check of the birds and habitats directives. European Commission, Brussels, Belgium.
Mimet A, Raymond R, Simon L, Julliard R. 2013. Can designation without regulation preserve land in the face of urbanization? A case study of ZNIEFFs in the Paris region. Applied Geography 45:342-352.
Moss D, Wyatt B, Cornaert MH, Roekaerts M. 1991. CORINE biotopes: the design, compilation and use of an inventory of sites of major importance for nature conservation in the European Community. Commission of the European Communities, Brussels, Belgium.
Paracchini ML, Petersen J-E, Hoogeveen Y, Bamps C, Burfield I, Van Swaay C. 2008. High nature value farmland in Europe - an estimate of the distribution patterns on the basis of land cover and biodiversity data. Office for Official Publications of the European Communities, Luxembourg, Luxembourg.
Pe'er G, et al. 2017. Is the CAP Fit for purpose? German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.
PECBMS (Pan-European Common Bird Monitoring Scheme). 2007. Species classification. PECBMS, Prague, Czech Republic. Available from http://www.ebcc.info/art-301/ (accessed January 1, 2014).
PECBMS (Pan-European Common Bird Monitoring Scheme). 2018. Home page. PECBMS, Prague, Czech Republic. Available from https://pecbms.info (accessed July 2018).
Pellissier V, Touroult J, Julliard R, Siblet JP, Jiguet F. 2013. Assessing the Natura 2000 network with a common breeding birds survey. Animal Conservation 16:566-574.
Rada S, Schweiger O, Harpke A, Kühn E, Kuras T, Settele J, Musche M. 2019. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Diversity and Distributions 25:217-224.
Schmucki R, et al. 2016. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. Journal of Applied Ecology 53:501-510.
Thomas JA. 2016. Butterfly communities under threat. Science 353:216-218.
Van Der Sluis T, et al. 2016. How much biodiversity is in Natura 2000? The “umbrella effect” of the European Natura 2000 protected area network. Alterra Wageningen UR, University & Research Centre, Wageningen, the Netherlands.
Van Swaay C, et al. 2007. The European butterfly indicator for grassland species: 1990-2015. De Vlinderstichting, Wageningen, the Netherlands.
Van Swaay C, Warren M, Loïs G. 2006. Biotope use and trends of European butterflies. Journal of Insect Conservation 10:189-209.
Verovnik R, Govedič M, Šalamun A. 2011. Is the Natura 2000 network sufficient for conservation of butterfly diversity? A case study in Slovenia. Journal of Insect Conservation 15:345-350.
Virkkala R, Rajasärkkä A. 2007. Uneven regional distribution of protected areas in Finland: consequences for boreal forest bird populations. Biological Conservation 134:361-371.
Wood S. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B 73:3-36.
Zhang Y. 2013. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Statistics and Computing 23:743-757.
Kerbiriou, C, Azam, C, Touroult, J, Marmet, J, Julien, J-F & Pellissier, V. 2018. Common bats are more abundant within Natura 2000 areas. Biological Conservation, 217 66-74.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.

Auteurs

V Pellissier (V)

Sorbonne Université, MNHN-CNRS-UPMC, UMR7204-CESCO, 43 rue Buffon, CP 135, Paris, 75005, France.
Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, DK 8000, Denmark.

R Schmucki (R)

Sorbonne Université, MNHN-CNRS-UPMC, UMR7204-CESCO, 43 rue Buffon, CP 135, Paris, 75005, France.
Centre de Synthèse et d'Analyse sur la Biodiversité, Immeuble Henri Poincaré, Domaine du Petit Arbois, Avenue Louis Philibert, Aix-en-Provence, 13857, France.
NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8EF, U.K.

G Pe'er (G)

German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.
Department Economics and Department Ecosystem Services, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany.

A Aunins (A)

Faculty of Biology, University of Latvia, Jelgavas iela 1, Riga, LV-1004, Latvia.
Latvian Ornithological Society, Skolas iela 3, Riga, LV-1010, Latvia.

T M Brereton (TM)

Butterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset, BH20 5QP, U.K.

L Brotons (L)

CSIC-CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
Catalan Ornithological Institute, Natural History Museum of Barcelona, Plaça Leonardo da Vinci 4-5, Barcelona, Catalonia, 08019, Spain.
InForest JRU (CEMFOR-CTFC), Solsona, Catalonia, 25280, Spain.

J Carnicer (J)

CSIC-CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Catalonia, 08028, Spain.

T Chodkiewicz (T)

Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warszawa, 00-679, Poland.
Polish Society for the Protection of Birds (OTOP), ul. Odrowaza 24, Marki, 05-270, Poland.

P Chylarecki (P)

Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warszawa, 00-679, Poland.

J C Del Moral (JC)

Sociedad Española de Ornitología (SEO/BirdLife), Melquíades Biencinto 34 ES-28053, Madrid, Spain.

V Escandell (V)

Sociedad Española de Ornitología (SEO/BirdLife), Melquíades Biencinto 34 ES-28053, Madrid, Spain.

D Evans (D)

European Topic Centre on Biological Diversity, 57 rue Cuvier, Paris, 75005, France.

R Foppen (R)

Sovon Dutch Centre for Field Ornithology, PO Box 6521, Nijmegen, 6503 GA, The Netherlands.

A Harpke (A)

Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, Halle/Saale, 06120, Germany.

J Heliölä (J)

Finnish Environment Institute (SYKE), Biodiversity Centre, P.O. Box 140, Helsinki, FI-00251, Finland.

S Herrando (S)

Catalan Ornithological Institute, Natural History Museum of Barcelona, Plaça Leonardo da Vinci 4-5, Barcelona, Catalonia, 08019, Spain.
InForest JRU (CEMFOR-CTFC), Solsona, Catalonia, 25280, Spain.

M Kuussaari (M)

Finnish Environment Institute (SYKE), Biodiversity Centre, P.O. Box 140, Helsinki, FI-00251, Finland.

E Kühn (E)

Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, Halle/Saale, 06120, Germany.

A Lehikoinen (A)

Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, Helsinki, FI-00014, Finland.

Å Lindström (Å)

Department of Biology, Biodiversity Unit, Lund University, Ecology Building, Lund, SE-223 62, Sweden.

C M Moshøj (CM)

DOF-BirdLife Denmark, Vesterbrogade 140, Copenhagen V, DK-1620, Denmark.

M Musche (M)

Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, Halle/Saale, 06120, Germany.

D Noble (D)

BTO, The Nunnery, Thetford, Norfolk, IP24 2PU, U.K.

T H Oliver (TH)

School of Biological Sciences, Harborne Building, Whiteknights Campus, University of Reading, Berkshire, RG6 6AS, U.K.

J Reif (J)

Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic.
Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 50, Olomouc, 771 43, Czech Republic.

D Richard (D)

European Topic Centre on Biological Diversity, 57 rue Cuvier, Paris, 75005, France.

D B Roy (DB)

NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8EF, U.K.

O Schweiger (O)

Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, Halle/Saale, 06120, Germany.

J Settele (J)

German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.
Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, Halle/Saale, 06120, Germany.

C Stefanescu (C)

CSIC-CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
Museu de Ciències Naturals de Granollers, Francesc Macià 51, Granollers, Catalonia, 08402, Spain.

N Teufelbauer (N)

BirdLife Austria, Museumplatz 1/10/8, Wien, A-1070, Austria.

J Touroult (J)

UMS 2006 PatriNat AFB, CNRS, MNHN; CP41, 36 rue Geoffroy Saint-Hilaire, Paris, 75005, France.

S Trautmann (S)

DDA, An den Speichern 6, Münster, 48157, Germany.

A J van Strien (AJ)

Statistics Netherlands, The Hague, The Netherlands.

C A M van Swaay (CAM)

Dutch Butterfly Conservation and Butterfly Conservation Europe, P.O. Box 506 NL 6700 AM, Wageningen, The Netherlands.

C van Turnhout (C)

Sovon Dutch Centre for Field Ornithology, PO Box 6521, Nijmegen, 6503 GA, The Netherlands.
Department of Animal Ecology & Ecophysiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, The Netherlands.

Z Vermouzek (Z)

Czech Society for Ornithology, Na Bělidle 252/34, Prague, CZ-150 00, Czech Republic.

P Voříšek (P)

Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 50, Olomouc, 771 43, Czech Republic.
Czech Society for Ornithology, Na Bělidle 252/34, Prague, CZ-150 00, Czech Republic.

F Jiguet (F)

Sorbonne Université, MNHN-CNRS-UPMC, UMR7204-CESCO, 43 rue Buffon, CP 135, Paris, 75005, France.

R Julliard (R)

Sorbonne Université, MNHN-CNRS-UPMC, UMR7204-CESCO, 43 rue Buffon, CP 135, Paris, 75005, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH