Lesions causing hallucinations localize to one common brain network.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
05
06
2019
accepted:
17
10
2019
revised:
26
09
2019
pubmed:
30
10
2019
medline:
15
5
2021
entrez:
30
10
2019
Statut:
ppublish
Résumé
The brain regions responsible for hallucinations remain unclear. We studied 89 brain lesions causing hallucinations using a recently validated technique termed lesion network mapping. We found that hallucinations occurred following lesions to a variety of different brain regions, but these lesion locations fell within a single functionally connected brain network. This network was defined by connectivity to the cerebellar vermis, inferior cerebellum (bilateral lobule X), and the right superior temporal sulcus. Within this single hallucination network, additional connections with the lesion location dictated the sensory modality of the hallucination: lesions causing visual hallucinations were connected to the lateral geniculate nucleus in the thalamus while lesions causing auditory hallucinations were connected to the dentate nucleus in the cerebellum. Our results suggest that lesions causing hallucinations localize to a single common brain network, but additional connections within this network dictate the sensory modality, lending insight into the causal neuroanatomical substrate of hallucinations.
Identifiants
pubmed: 31659272
doi: 10.1038/s41380-019-0565-3
pii: 10.1038/s41380-019-0565-3
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1299-1309Subventions
Organisme : NIMH NIH HHS
ID : R01 MH113929
Pays : United States
Références
American Psychological Association. APA dictionary of psychology. Washington, DC: American Psychological Association. 2018. https://dictionary.apa.org/hallucination .
Aleman A. Hallucinations: the science of idiosyncratic perception. 1st ed. Washington, DC: American Psychological Association; 2008.
Laroi F. The phenomenological diversity of hallucinations: some theoretical and clinical implications. Psychol Belg. 2006;46:163–83.
doi: 10.5334/pb-46-1-2-163
Clark ML, Waters F, Vatskalis TM, Jablensky A. On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur Psychiatry. 2017;41:122–8.
pubmed: 28142106
doi: 10.1016/j.eurpsy.2016.10.011
Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24:1641–9.
pubmed: 19514014
doi: 10.1002/mds.22643
Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Caregiver-burden in parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism Relat Disord. 2006;12:35–41.
pubmed: 16271496
doi: 10.1016/j.parkreldis.2005.06.011
Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: a quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016;69:113–23.
pubmed: 27473935
doi: 10.1016/j.neubiorev.2016.05.037
Asaad G, Shapiro B. Hallucinations: theoretical and clinical overview. Am J Psychiatry. 1986;143:1088–97.
pubmed: 2875662
doi: 10.1176/ajp.143.9.1088
David AS. The cognitive neuropsychiatry of auditory verbal hallucinations: an overview. Cogn Neuropsychiatry. 2004;9:107–23.
pubmed: 16571577
doi: 10.1080/13546800344000183
Allen P, Laroi F, McGuire PK, Aleman A. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev. 2008;32:175–91.
pubmed: 17884165
doi: 10.1016/j.neubiorev.2007.07.012
Jardri R, Thomas P, Delmaire C, Delion P, Pins D. The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex. 2013;23:1108–17.
pubmed: 22535908
doi: 10.1093/cercor/bhs082
Rolland B, Amad A, Poulet E, Bordet R, Vignaud A, Bation R, et al. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull. 2015;41:291–9.
pubmed: 25053649
doi: 10.1093/schbul/sbu097
Garrison JR, Fernyhough C, McCarthy-Jones S, Haggard M, Simons JS. Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nat Commun. 2015;6:8956.
pubmed: 26573408
doi: 10.1038/ncomms9956
Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168:73–81.
pubmed: 20952459
doi: 10.1176/appi.ajp.2010.09101522
Braun CM, Dumont M, Duval J, Hamel-Hebert I, Godbout L. Brain modules of hallucination: an analysis of multiple patients with brain lesions. J Psychiatry Neurosci. 2003;28:432–49.
pubmed: 14631455
pmcid: 257791
Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237–45.
pubmed: 30575457
doi: 10.1056/NEJMra1706158
Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage. 2018;165:180–9.
pubmed: 29042216
doi: 10.1016/j.neuroimage.2017.10.028
Adolphs R. Human lesion studies in the 21st century. Neuron. 2016;90:1151–3.
pubmed: 27311080
pmcid: 5656290
doi: 10.1016/j.neuron.2016.05.014
Morenas-Rodriguez E, Camps-Renom P, Perez-Cordon A, Horta-Barba A, Simon-Talero M, Cortes-Vicente E, et al. Visual hallucinations in patients with acute stroke: a prospective exploratory study. Eur J Neurol. 2017;24:734–40.
pubmed: 28332250
doi: 10.1111/ene.13278
Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS Jr., et al. Network localization of neurological symptoms from focal brain lesions. Brain. 2015;138(Pt 10):3061–75.
pubmed: 26264514
pmcid: 4671478
doi: 10.1093/brain/awv228
Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22.
pubmed: 24871646
doi: 10.1093/brain/awu101
Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA. 2014;111:E4367–75.
pubmed: 25267639
pmcid: 4205651
doi: 10.1073/pnas.1405003111
Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.
pubmed: 28586141
pmcid: 5880678
doi: 10.1002/ana.24974
Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective nMagnetic stimulation sites. Biol Psychiatry. 2018;84:28–37.
pubmed: 29274805
doi: 10.1016/j.biopsych.2017.10.028
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.
pubmed: 19622511
doi: 10.7326/0003-4819-151-4-200908180-00135
Darby RR, Laganiere S, Pascual-Leone A, Prasad S, Fox MD. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain. 2016;140:497–507.
pmcid: 5278302
doi: 10.1093/brain/aww288
Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142:1660–74.
pubmed: 31099831
pmcid: 6536848
doi: 10.1093/brain/awz112
Darby RR, Horn A, Cushman F, Fox MD. Lesion network localization of criminal behavior. Proc Natl Acad Sci USA. 2018;115:601–6.
pubmed: 29255017
doi: 10.1073/pnas.1706587115
Darby RR, Joutsa J, Burke MJ, Fox MD. Lesion network localization of free will. Proc Natl Acad Sci USA. 2018;115:10792–7.
pubmed: 30275309
pmcid: 6196503
doi: 10.1073/pnas.1814117115
Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain. 2018;141:2445–56.
pubmed: 29982424
pmcid: 6061866
doi: 10.1093/brain/awy161
Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84:153–7.
pubmed: 30014594
doi: 10.1002/ana.25285
Wu O, Cloonan L, Mocking SJ, Bouts MJ, Copen WA, Cougo-Pinto PT, et al. Role of acute lesion topography in initial ischemic stroke severity and long-term functional outcomes. Stroke. 2015;46:2438–44.
pubmed: 26199314
pmcid: 4550548
doi: 10.1161/STROKEAHA.115.009643
Powers AR, Mathys C, Corlett P. Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science. 2017;357:596–600.
pubmed: 28798131
pmcid: 5802347
doi: 10.1126/science.aan3458
Ffytche DH. The hodology of hallucinations. Cortex. 2008;44:1067–83.
pubmed: 18586234
doi: 10.1016/j.cortex.2008.04.005
Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.
pubmed: 16791141
doi: 10.1038/nrn1953
Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.
pubmed: 18395701
pmcid: 3175494
doi: 10.1016/j.biopsych.2008.01.003
Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.
pubmed: 15377747
doi: 10.1176/jnp.16.3.367
Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160:1614–7.
pubmed: 12944335
doi: 10.1176/appi.ajp.160.9.1614
Park HS, KIm BS, Kim YK, Yang YS, Cho SS, Kim SY, et al. Different cerebral metabolic features in dementia with Lewy bodies with/without visual hallucination. J Nucl Med. 2008;49(supplement 1):36P–P.
Pagonabarraga J, Soriano-Mas C, Llebaria G, Lopez-Sola M, Pujol J, Kulisevsky J. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:290–6.
pubmed: 24373690
doi: 10.1016/j.parkreldis.2013.11.017
McAuley T, Brahmbhatt S, Barch DM. Performance on an episodic encoding task yields further insight into functional brain development. Neuroimage. 2007;34:815–26.
pubmed: 17112745
doi: 10.1016/j.neuroimage.2006.08.042
Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52.
pubmed: 9648540
doi: 10.1093/brain/121.6.1013
Jones E, Powell T. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93:793–820.
pubmed: 4992433
doi: 10.1093/brain/93.4.793
Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron. 2004;41:809–23.
pubmed: 15003179
doi: 10.1016/S0896-6273(04)00070-4
Santhouse AM, Howard RJ, ffytche DH. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain. 2000;123:2055–64.
pubmed: 11004123
doi: 10.1093/brain/123.10.2055
Friston KJ. Hallucinations and perceptual inference. Behav Brain Sci. 2005;28:764–6.
doi: 10.1017/S0140525X05290131
Rajesh PNR, Dana HB. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79.
doi: 10.1038/4580
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.
pubmed: 17329432
pmcid: 2680293
doi: 10.1523/JNEUROSCI.5587-06.2007
Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med. 2011;41:1701–8.
pubmed: 21144116
doi: 10.1017/S0033291710002205
White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res. 2010;123:105–15.
pubmed: 20724114
doi: 10.1016/j.schres.2010.07.020
Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.
pubmed: 21908230
doi: 10.1016/j.tics.2011.08.003
Jones EG. The Thalamus. New York: Plenum Press; 1985.
Manford M, Andermann F. Complex visual hallucinations. Clin neurobiological insights Brain. 1998;121(Pt 10):1819.
Geddes MR, Tie Y, Gabrieli JD, McGinnis SM, Golby AJ, Whitfield-Gabrieli S. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex. 2016;74:96–106.
pubmed: 26656284
doi: 10.1016/j.cortex.2015.10.015
Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 2019;1. https://doi.org/10.1093/braincomms/fcz006 . [Epub ahead of print].
Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–7.
pubmed: 7507614
doi: 10.1016/0166-2236(93)90072-T
Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–9.
pubmed: 20655802
doi: 10.1016/j.tics.2010.06.005
Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski E, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. Neuroimage. 2011;57:1184–91.
pubmed: 21640191
doi: 10.1016/j.neuroimage.2011.05.045
Curcic-Blake B, Ford JM, Hubl D, Orlov ND, Sommer IE, Waters F, et al. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol. 2017;148:1–20.
pubmed: 27890810
pmcid: 5240789
doi: 10.1016/j.pneurobio.2016.11.002
Cheng DT, Meintjes EM, Stanton ME, Desmond JE, Pienaar M, Dodge NC, et al. Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Hum Brain Mapp. 2014;35:1390–403.
pubmed: 23674498
doi: 10.1002/hbm.22261
Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci. 1998;1:738–42.
pubmed: 10196592
doi: 10.1038/3738
Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science. 2014;345:660–5.
pubmed: 25104383
pmcid: 5776147
doi: 10.1126/science.1254126
Hirsch JA, Wang X, Sommer FT, Martinez LM. How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci. 2015;38:309–29.
pubmed: 26154979
doi: 10.1146/annurev-neuro-071013-014229
Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res. 2013;207:65–90.
pubmed: 24309251
pmcid: 4300113
doi: 10.1016/B978-0-444-63327-9.00003-5
Jardri R, Hugdahl K, Hughes M, Brunelin J, Waters F, Alderson-Day B, et al. Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophr Bull. 2016;42:1124–34.
pubmed: 27261492
pmcid: 4988749
doi: 10.1093/schbul/sbw075
Lee I, Nielsen K, Nawaz U, Hall MH, Ongur D, Keshavan M, et al. Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord. 2019;244:115–23.
pubmed: 30340100
doi: 10.1016/j.jad.2018.10.087
Waters F, Fernyhough C. Hallucinations: a systematic review of points of similarity and difference across diagnostic classes. Schizophr Bull. 2017;43:32–43.
pubmed: 27872259
doi: 10.1093/schbul/sbw132
Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, et al. A human depression circuit derived from focal brain lesions. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.07.023 .
Orlov ND, Giampietro V, O’Daly O, Lam SL, Barker GJ, Rubia K, et al. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study. Transl Psychiatry. 2018;8:46.
pubmed: 29430009
pmcid: 5865171
doi: 10.1038/s41398-017-0067-5
Slotema CW, Blom JD, van Lutterveld R, Hoek HW, Sommer IE. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–10.
pubmed: 24315551
doi: 10.1016/j.biopsych.2013.09.038
Merabet LB, Kobayashi M, Barton J, Pascual-Leone A. Suppression of complex visual hallucinatory experiences by occipital transcranial magnetic stimulation: a case report. Neurocase. 2003;9:436–40.
pubmed: 14972758
doi: 10.1076/neur.9.5.436.16557
Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage. 2006;29:1092–105.
pubmed: 16236527
doi: 10.1016/j.neuroimage.2005.08.040
Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski E, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94.
pubmed: 20965257
doi: 10.1016/j.neuroimage.2010.10.035