Myelin breakdown favours Mycobacterium leprae survival in Schwann cells.


Journal

Cellular microbiology
ISSN: 1462-5822
Titre abrégé: Cell Microbiol
Pays: India
ID NLM: 100883691

Informations de publication

Date de publication:
01 2020
Historique:
received: 11 07 2019
revised: 06 09 2019
accepted: 25 09 2019
pubmed: 28 10 2019
medline: 10 4 2021
entrez: 26 10 2019
Statut: ppublish

Résumé

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.

Identifiants

pubmed: 31652371
doi: 10.1111/cmi.13128
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13128

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI141526
Pays : United States

Informations de copyright

© 2019 John Wiley & Sons Ltd.

Références

Barisch, C., & Soldati, T. (2017). Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochime, 141, 54-61. https://doi.org/10.1016/j.biochi.2017.06.001
Brosius-Lutz, A., Chung, W. S., Sloan, S. A., Carson, G. A., Zhou, L., Lovelett, E., … Barres, B. A. (2017). Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proceedings of the National Academy of Sciences, 114(38), E8072-E8080. https://doi.org/10.1073/pnas.1710566114
Casalenovo, M. B., Rosa, P. S., de Faria Bertoluci, D. F., Barbosa, A. S. A. A., Nascimento, D. C. D., de Souza, V. N. B., & Nogueira, M. R. S. (2019). Myelination key factor krox-20 is downregulated in Schwann cells and murine sciatic nerves infected by Mycobacterium leprae. International Journal of Experimental Pathology, 100, 1-11. https://doi.org/10.1111/iep.12309
Chrast, R., Saher, G., Nave, K. A., & Verheijen, M. H. G. (2011). Lipid metabolism in myelinating glial cells: Lessons from human inherited disorders and mouse models. Journal of Lipid Research, 52(3), 419-434. https://doi.org/10.1194/jlr.R009761
Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., … Barrell, B. G. (2001). Massive gene decay in the leprosy bacillus. Nature, 409(6823), 1007-1011. https://doi.org/10.1038/35059006
Elamin, A.A., Stehr, M., & Singh, M. (2012). Lipid droplets and Mycobacterium leprae infection. J Pathog, 361374. https://doi.org/10.1155/2012/361374, 1, 10.
Gomez-Sanchez, J. A., Carly, L., Iruarrizaga-Lejarreta, M., Palomo-Irigoyen, M., Varela-Rey, M., Griffith, M., … Jessen, K. R. (2015). Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. The Journal of Cell Biology, 210(1), 153-168. https://doi.org/10.1083/jcb.201503019
Goodrum, J., Earnhardt, T., Goines, N., & Bouldin, T. W. (1994). Fate of myelin lipids during degeneration and regeneration of peripheral nerve: An autoradiographic study. The Journal of Neuroscience, 14(1), 357-367. https://doi.org/10.1523/JNEUROSCI.14-01-00357.1994
Ikura, Y., & Caldwell, S. H. (2015). Lipid droplet-associated proteins in alcoholic liver disease: A potential linkage with hepatocellular damage. International Journal of Clinical and Experimental Pathology, 8(8), 8699-8708.
Jang, S.Y., Shin, Y.K., Park, S.Y., Park, J.Y., Lee, H.J., Yoo, Y.H., Kim J.K. Park, H.T. (2016). Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia, May;64(5):730-42. https://doi.org/10.1002/glia.22957.
Kaur, G., & Kaur, J. (2017). Multifaceted role of lipids in Mycobacterium leprae. Future Microbiology, 12, 315-335. https://doi.org/10.2217/fmb-2016-0173
Madigan, C. A., Cambier, C. J., Kelly-Scumpia, J. M., Scumpia, P. O., Cheng, T. V., Zailaa, J., … Ramakrishnan, L. (2017). A macrophage response to Mycobacterium leprae phenolic glycolipid initiates nerve damage in leprosy. Cell, 170(5), 973-985. https://doi.org/10.1016/j.cell.2017.07.030
Masaki, T., Qu, K., Cholewa-Waclaw, J., Burr, K., Raaum, R., & Rambukkana, A. (2013). Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell, 152(1-2), 51-67. https://doi.org/10.1016/j.cell.2012.12.014
Mattos, K. A., Lara, F. A., Oliveira, V. G., Rodrigues, L. S., D'Avila, H., Melo, R. C., … Pessolani, M. C. (2010). Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: A putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cellular Microbiology, 13(2), 259-273. https://doi.org/10.1111/j.1462-5822.2010.01533.x
Mattos, K. A., Oliveira, V. G., D'Avila, H., Rodrigues, L. S., Pinheiro, R. O., Sarno, E. N., … Bozza, P. T. (2011). TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: Immunoinflammatory platforms associated with bacterial persistence. Journal of Immunology, 187(5), 2548-2558. https://doi.org/10.4049/jimmunol.1101344
Mattos, K. A., Sarno, E. N., Pessolani, M. C. V., & Bozza, P. T. (2012). Deciphering the contribution of lipid droplets in leprosy: Multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Memórias do Instituto Oswaldo Cruz, 107(Suppl 1), 156-166. https://doi.org/10.1590/S0074-02762012000900023
Medeiros, R. C., Girardi, K. D., Cardoso, F. K., Mietto, B. S., Pinto, T. G., Gomez, L. S., … Lara, F. A. (2016). Subversion of Schwann cell glucose metabolism by Mycobacterium leprae. The Journal of Biological Chemistry, 291(41), 21375-21387. https://doi.org/10.1074/jbc.M116.725283
Petito, R. B., Amadeu, T. P., Pascarelli, B. M., Jardim, M. R., Vital, R. T., Antunes, S. L., & Sarno, E. N. (2013). Transforming growth factor-β1 may be a key mediator of the fibrogenic properties of neural cells in leprosy. Journal of Neuropathology and Experimental Neurology, 72(4), 351-365. https://doi.org/10.1097/NEN.0b013e31828bfc60
Rambukkana, A., Zanazzi, G., Tapinos, N., & Salzer, J. L. (2002). Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science, 296(5569), 927-931. https://doi.org/10.1126/science.1067631
Rolfe, A. J., Bosco, D. B., Broussard, E. N., & Ren, Y. (2017). In vitro phagocytosis of myelin debris by bone marrow-derived macrophages. J Vis Exo, 30(130). https://doi.org/10.3791/56322
Scollard, D. M., Truman, R. W., & Ebenezer, G. J. (2015). Mechanisms of nerve injury in leprosy. Clinics in Dermatology, 33(1), 46-54. https://doi.org/10.1016/j.clindermatol.2014.07.008
Serrano-Coll, H., Salazar-Peláez, L., Acevedo-Saenz, L., & Cardona-Castro, N. (2018). Mycobacterium leprae induced nerve damage: Direct and indirect mechanisms. Pathog Dis, 76(6). https://doi.org/10.1093/femspd/fty06
Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R., & Schirmacher, P. H. (2008). Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology, 47(6), 1936-1946. https://doi.org/10.1002/hep.22268
Sun, Z., Gong, J., Wu, H., Xu, W., Wu, L., Xu, D., … Li, P. (2014). Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature Communications, 4, 1594. https://doi.org/10.1038/ncomms2581
Tanigawa, K., Suzuki, K., Nakamura, K., Akama, T., Kawashima, A., Wu, H., … Ishii, N. (2008). Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with Mycobacterium leprae. FEMS Microbiology Letters, 289(1), 72-79. https://doi.org/10.1111/j.1574-6968.2008.01369.x
Tapinos, N., Ohnishi, M., & Rambukkana, A. (2006). ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nature Medicine, 12(8), 961-966. https://doi.org/10.1038/nm1433

Auteurs

Bruno Siqueira Mietto (BS)

Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Beatriz Junqueira de Souza (BJ)

Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Patricia Sammarco Rosa (PS)

Lauro de Souza Lima Institute, São Paulo, Brazil.

Maria Cristina Vidal Pessolani (MCV)

Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Flavio Alves Lara (FA)

Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Euzenir Nunes Sarno (EN)

Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH