Magnetic resonance-guided radiation therapy: A review.

MR-guided radiation therapy magnetic resonance imaging radiation oncology radiation oncology imaging

Journal

Journal of medical imaging and radiation oncology
ISSN: 1754-9485
Titre abrégé: J Med Imaging Radiat Oncol
Pays: Australia
ID NLM: 101469340

Informations de publication

Date de publication:
Feb 2020
Historique:
received: 25 06 2019
accepted: 24 09 2019
pubmed: 28 10 2019
medline: 20 1 2021
entrez: 25 10 2019
Statut: ppublish

Résumé

Magnetic resonance-guided radiation therapy (MRgRT) is a promising approach to improving clinical outcomes for patients treated with radiation therapy. The roles of image guidance, adaptive planning and magnetic resonance imaging in radiation therapy have been increasing over the last two decades. Technical advances have led to the feasible combination of magnetic resonance imaging and radiation therapy technologies, leading to improved soft-tissue visualisation, assessment of inter- and intrafraction motion, motion management, online adaptive radiation therapy and the incorporation of functional information into treatment. MRgRT can potentially transform radiation oncology by improving tumour control and quality of life after radiation therapy and increasing convenience of treatment by shortening treatment courses for patients. Multiple groups have developed clinical implementations of MRgRT predominantly in the abdomen and pelvis, with patients having been treated since 2014. While studies of MRgRT have primarily been dosimetric so far, an increasing number of trials are underway examining the potential clinical benefits of MRgRT, with coordinated efforts to rigorously evaluate the benefits of the promising technology. This review discusses the current implementations, studies, potential benefits and challenges of MRgRT.

Identifiants

pubmed: 31646742
doi: 10.1111/1754-9485.12968
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

163-177

Subventions

Organisme : Cancer Research Manchester Centre
ID : C147/A25254
Organisme : Cancer Research UK
ID : A21993
Pays : United Kingdom
Organisme : NIHR Manchester Biomedical Research Centre
Organisme : Cancer Research Manchester Centre
ID : C147/A18083

Informations de copyright

© 2019 The Royal Australian and New Zealand College of Radiologists.

Références

de Crevoisier R, Bayar MA, Pommier P et al. Daily versus weekly prostate cancer image guided radiation therapy: phase 3 multicenter randomized trial. Int J Radiat Oncol Biol Phys 2018; 102: 1420-9.
Tøndel H, Lund J-Å, Lydersen S et al. Radiotherapy for prostate cancer - does daily image guidance with tighter margins improve patient reported outcomes compared to weekly orthogonal verified irradiation? Results from a randomized controlled trial. Radiother Oncol 2018; 126: 229-35.
Njeh CF, Dong L, Orton CG. Point/Counterpoint. IGRT has limited clinical value due to lack of accurate tumor delineation. Med Phys 2013; 40: 040601.
Guckenberger M, Wilbert J, Richter A, Baier K, Flentje M. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2011; 79: 901-8.
Foroudi F, Wong J, Kron T et al. Online adaptive radiotherapy for muscle-invasive bladder cancer: results of a pilot study. Int J Radiat Oncol Biol Phys 2011; 81: 765-71.
Castelli J, Simon A, Louvel G et al. Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia. Radiat Oncol 2015; 10: 6.
Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys 2017; 99: 994-1003.
Møller DS, Holt MI, Alber M et al. Adaptive radiotherapy for advanced lung cancer ensures target coverage and decreases lung dose. Radiother Oncol 2016; 121: 32-8.
Nijkamp J, Pos FJ, Nuver TT et al. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys 2008; 70: 75-82.
Dickie C, Parent A, Griffin AM et al. The value of adaptive preoperative radiotherapy in management of soft tissue sarcoma. Radiother Oncol 2017; 122: 458-63.
Oh S, Stewart J, Moseley J et al. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT. Radiother Oncol 2014; 110: 323-8.
Castelli J, Simon A, Lafond C et al. Adaptive radiotherapy for head and neck cancer. Acta Oncol 2018; 57: 1284-92.
Passoni P, Fiorino C, Slim N et al. Feasibility of an adaptive strategy in preoperative radiochemotherapy for rectal cancer with image-guided tomotherapy: boosting the dose to the shrinking tumor. Int J Radiat Oncol Biol Phys 2013; 87: 67-72.
Hafeez S, Warren-Oseni K, McNair HA et al. Prospective study delivering simultaneous integrated high-dose tumor boost (≤70 Gy) with image guided adaptive radiation therapy for radical treatment of localized muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys 2016; 94: 1022-30.
Chung N-N, Ting L-L, Hsu W-C, Lui LT, Wang P-M. Impact of magnetic resonance imaging versus CT on nasopharyngeal carcinoma: primary tumor target delineation for radiotherapy. Head Neck 2004; 26: 241-6.
Mitchell DG, Snyder B, Coakley F et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 2006; 24: 5687-94.
Chang JH, Lim Joon D, Nguyen BT et al. MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer. J Med Imaging Radiat Oncol 2014; 58: 237-43.
Tharmalingam H, Alonzi R, Hoskin PJ. The role of magnetic resonance imaging in brachytherapy. Clin Oncol 2018; 30: 728-36.
Feutren T, Herrera FG. Prostate irradiation with focal dose escalation to the intraprostatic dominant nodule: a systematic review. Prostate Int 2018; 6: 75-87.
Monninkhof EM, van Loon JWL, van Vulpen M et al. Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: toxicity in the FLAME randomized controlled trial. Radiother Oncol 2018; 127: 74-80.
Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21: 101-10.
van der Heide UA, Houweling AC, Groenendaal G, Beets-Tan RGH, Lambin P. Functional MRI for radiotherapy dose painting. Magn Reson Imaging 2012; 30: 1216-23.
Hoskin PJ. Hypoxia dose painting in prostate and cervix cancer. Acta Oncol 2015; 54: 1259-62.
Verma V, Choi JI, Sawant A et al. Use of PET and other functional imaging to guide target delineation in radiation oncology. Semin Radiat Oncol 2018; 28: 171-7.
O’Connor JPB, Aboagye EO, Adams JE et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2016; 14: 169.
Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 2011; 98: 154-61.
Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24: 196-9.
Acharya S, Fischer-Valuck BW, Kashani R et al. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys 2016; 94: 394-403.
Fischer-Valuck BW, Henke L, Green O et al. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv Radiat Oncol 2017; 2: 485-93.
Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol 2019; 18: 98-101.
Henke LE, Contreras JA, Green OL et al. Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): a 4.5-year clinical experience. Clin Oncol 2018; 30: 720-7.
Kerkmeijer LGW, Fuller CD, Verkooijen HM et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol 2016; 6: 215.
Winkel D, Bol GH, Kroon PS et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Radiat Oncol 2019; 18: 54-9.
Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol 2017; 62: L41-50.
Keall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 2014; 24: 203-6.
Whelan B, Liney GP, Dowling JA et al. An MRI-compatible patient rotation system - design, construction, and first organ deformation results. Med Phys 2017; 44: 581-8.
Fallone BG. The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 2014; 24: 200-2.
Noel CE, Parikh PJ, Spencer CR et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 2015; 54: 1474-82.
El-Bared N, Portelance L, Spieler BO et al. Dosimetric benefits and practical pitfalls of daily online adaptive MRI-guided stereotactic radiation therapy for pancreatic cancer. Pract Radiat Oncol 2019; 9: e46-54.
McPartlin AJ, Li XA, Kershaw LE et al. MRI-guided prostate adaptive radiotherapy - a systematic review. Radiother Oncol 2016; 119: 371-80.
Bendall L, Papiez BW, Hawkins MA, Fenwick JD. Isotoxic dose escalation with real-time imaging on an MR-linac in lung radiation therapy. Int J Radiat Oncol Biol Phys 2018; 102: S207.
Cree A, Livsey J, Barraclough L et al. The potential value of MRI in external-beam radiotherapy for cervical cancer. Clin Oncol 2018; 30: 737-50.
Palacios MA, Bohoudi O, Bruynzeel AME et al. Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys 2018; 102: 426-33.
Winkel D, Werensteijn-Honingh AM, Kroon PS et al. Individual lymph nodes: “See it and Zap it”. Clin Transl Radiat Oncol 2019; 18: 46-53.
Rudra S, Jiang N, Rosenberg SA et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med 2019; 8: 2123-32.
Mohamed ASR, Bahig H, Aristophanous M et al. Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT. Clin Transl Radiat Oncol 2018; 11: 11-8.
Bahig H, Yuan Y, Mohamed ASR et al. Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): an R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol 2018; 13: 19-23.
Lagerwaard F, Bohoudi O, Tetar S, Admiraal MA, Rosario TS, Bruynzeel A. Combined inter- and intrafractional plan adaptation using fraction partitioning in magnetic resonance-guided radiotherapy delivery. Cureus 2018; 10: e2434.
Shelley LEA, Scaife JE, Romanchikova M et al. Delivered dose can be a better predictor of rectal toxicity than planned dose in prostate radiotherapy. Radiother Oncol 2017; 123: 466-71.
Bainbridge H, Salem A, Tijssen RHN et al. Magnetic resonance imaging in precision radiation therapy for lung cancer. Transl Lung Cancer Res 2017; 6: 689-707.
Padgett KR, Simpson GN, Llorente R, Samuels MA, Dogan N. Feasibility of adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of lung tumors. Cureus 2018; 10: e2423.
Henke LE, Kashani R, Hilliard J et al. In silico trial of MR-guided midtreatment adaptive planning for hypofractionated stereotactic radiation therapy in centrally located thoracic tumors. Int J Radiat Oncol Biol Phys 2018; 102: 987-95.
Hamming-Vrieze O, van Kranen SR, van Beek S et al. Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. Int J Radiat Oncol Biol Phys 2012; 84: e201-7.
Mehta S, Gajjar SR, Padgett KR et al. Daily tracking of glioblastoma resection cavity, cerebral edema, and tumor volume with MRI-guided radiation therapy. Cureus 2018; 10: e2346.
Asher D, Padgett KR, Llorente RE et al. Magnetic resonance-guided external beam radiation and brachytherapy for a patient with intact cervical cancer. Cureus 2018; 10: e2577.
Green OL, Rankine LJ, Cai B et al. First clinical implementation of real-time, real anatomy tracking and radiation beam control. Med Phys 2018; 45: 3728-40.
Hegde JV, Cao M, Yu VY et al. Magnetic resonance imaging guidance mitigates the effects of intrafraction prostate motion during stereotactic body radiotherapy for prostate cancer. Cureus 2018; 10: e2442.
Tetar SU, Bruynzeel AME, Lagerwaard FJ, Slotman BJ, Bohoudi O, Palacios MA. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys Imaging Radiat Oncol 2019; 9: 69-76.
Prins FM, Stemkens B, Kerkmeijer LGW et al. Intrafraction motion management of renal cell carcinoma with magnetic resonance imaging-guided stereotactic body radiation therapy. Pract Radiat Oncol 2019; 9: e55-61.
Zou W, Dong L, Kevin Teo B-K. Current state of image guidance in radiation oncology: implications for PTV margin expansion and adaptive therapy. Semin Radiat Oncol 2018; 28: 238-47.
Menten MJ, Wetscherek A, Fast MF. MRI-guided lung SBRT: present and future developments. Phys Med 2017; 44: 139-49.
Henke L, Kashani R, Robinson C et al. Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol 2018; 126: 519-26.
Levin-Epstein R, Cao M, Lee P, Steinberg ML, Lamb J, Raldow AC. Magnetic resonance-guided inter-fraction monitoring opens doors to delivering safer reirradiation: an illustrative case report and discussion. Cureus 2018; 10: e2479.
Henke L, Kashani R, Yang D et al. Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys 2016; 96: 1078-86.
Mittauer K, Paliwal B, Hill P et al. A new era of image guidance with magnetic resonance-guided radiation therapy for abdominal and thoracic malignancies. Cureus 2018; 10: e2422.
Acharya S, Fischer-Valuck BW, Mazur TR et al. Magnetic resonance image guided radiation therapy for external beam accelerated partial-breast irradiation: evaluation of delivered dose and intrafractional cavity motion. Int J Radiat Oncol Biol Phys 2016; 96: 785-92.
Al-Ward S, Wronski M, Ahmad SB et al. The radiobiological impact of motion tracking of liver, pancreas and kidney SBRT tumors in a MR-linac. Phys Med Biol 2018; 63: 215022.
Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, Nuyts S. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 2009; 50: 1020-7.
Grégoire V, Thorwarth D, Lee JA. Molecular imaging-guided radiotherapy for the treatment of head-and-neck squamous cell carcinoma: does it fulfill the promises? Semin Radiat Oncol 2018; 28: 35-45.
Fontanarosa D, Witte M, Meijer G et al. Probabilistic evaluation of target dose deterioration in dose painting by numbers for stage II/III lung cancer. Pract Radiat Oncol 2015; 5: e375-82.
Datta A, Aznar MC, Dubec M, Parker GJM, O’Connor JPB. Delivering functional imaging on the MRI-linac: current challenges and potential solutions. Clin Oncol 2018; 30: 702-10.
Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007; 25: 4104-9.
Eccles CL, Haider EA, Haider MA, Fung S, Lockwood G, Dawson LA. Change in diffusion weighted MRI during liver cancer radiotherapy: preliminary observations. Acta Oncol 2009; 48: 1034-43.
Weiss E, Ford JC, Olsen KM et al. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: a pilot study. Lung Cancer 2016; 96: 113-9.
King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging 2016; 16: 23.
Yang Y, Cao M, Sheng K et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys 2016; 43: 1369-73.
Foltz WD, Wu A, Chung P et al. Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer. J Magn Reson Imaging 2013; 37: 909-16.
Pasquier D, Hadj Henni A, Escande A et al. Diffusion weighted MRI as an early predictor of tumor response to hypofractionated stereotactic boost for prostate cancer. Sci Rep 2018; 8: 10407.
Leibfarth S, Winter RM, Lyng H, Zips D, Thorwarth D. Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy. Clin Transl Radiat Oncol 2018; 13: 29-37.
Kooreman ES, van Houdt PJ, Nowee ME et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol 2019; 133: 156-62.
Cao Y, Tseng C-L, Balter JM, Teng F, Parmar HA, Sahgal A. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol 2017; 19(Suppl 2):ii16-29.
Metcalfe P, Liney GP, Holloway L et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat 2013; 12: 429-46.
Matsuo M, Matsumoto S, Mitchell JB, Krishna MC, Camphausen K. Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol 2014; 24: 210-7.
Tatum JL, Kelloff GJ, Gillies RJ et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 2006; 82: 699-757.
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4: 437-47.
Grau C, Muren LP, Høyer M, Lindegaard J, Overgaard J. Image-guided adaptive radiotherapy - integration of biology and technology to improve clinical outcome. Acta Oncol 2008; 47: 1182-5.
Grau C, Olsen DR, Overgaard J, Høyer M, Lindegaard JC, Muren LP. Biology-guided adaptive radiation therapy - presence or future? Acta Oncol 2010; 49: 884-7.
O’Connor JPB, Boult JKR, Jamin Y et al. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res 2016; 76: 787-95.
Dewhirst MW, Birer SR. Oxygen-enhanced MRI is a major advance in tumor hypoxia imaging. Cancer Res 2016; 76: 769-72.
Lambin P, Leijenaar RTH, Deist TM et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14: 749-62.
Fave X, Zhang L, Yang J et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep 2017; 7: 588.
Boldrini L, Cusumano D, Chiloiro G et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med 2019; 124: 145-53.
Chand M, Oliva Perez R. MRI linac and how it may potentially lead to more complete response in rectal cancer. Dis Colon Rectum 2018; 61: 643-4.
Kan MWK, Leung LHT, Wong W, Lam N. Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2008; 70: 272-9.
Gudowska I, Ardenfors O, Toma-Dasu I, Dasu A. Radiation burden from secondary doses to patients undergoing radiation therapy with photons and light ions and radiation doses from imaging modalities. Radiat Prot Dosimetry 2014; 161: 357-62.
Wall V, Marignol L, ElBeltagi N. Image-guided radiotherapy in paediatrics: a survey of international patterns of practice. J Med Imaging Radiat Sci 2018; 49: 265-9.
Henke LE, Green OL, Schiff J et al. First reported case of pediatric radiation treatment with magnetic resonance image guided radiation therapy. Adv Radiat Oncol 2019; 4: 233-6.
van Herk M, McWilliam A, Dubec M, Faivre-Finn C, Choudhury A. Magnetic resonance imaging-guided radiation therapy: a short strengths, weaknesses, opportunities, and threats analysis. Int J Radiat Oncol Biol Phys 2018; 101: 1057-60.
McWilliam A, Rowland B, van Herk M. The challenges of using MRI during radiotherapy. Clin Oncol 2018; 30: 680-5.
Paganelli C, Whelan B, Peroni M et al. MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Phys Med Biol 2018; 63: 22TR03.
Kapanen M, Collan J, Beule A, Seppälä T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 2013; 70: 127-35.
Liney GP, Owen SC, Beaumont AKE, Lazar VR, Manton DJ, Beavis AW. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer. Br J Radiol 2013; 86: 20130150.
Paulson ES, Erickson B, Schultz C, Allen Li X. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys 2015; 42: 28-39.
Xing A, Holloway L, Arumugam S et al. Commissioning and quality control of a dedicated wide bore 3T MRI simulator for radiotherapy planning. Int J Cancer Ther Oncol 2016; 4: 421.
van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, Slotman BJ, Senan S, Lagerwaard FJ. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 2018; 102: 858-66.
Oar A, Liney G, Rai R et al. Comparison of four dimensional computed tomography and magnetic resonance imaging in abdominal radiotherapy planning. Phys Imaging Radiat Oncol 2018; 7: 70-5.
van Gelderen P, de Zwart JA, Starewicz P, Hinks RS, Duyn JH. Real-time shimming to compensate for respiration-induced B0 fluctuations. Magn Reson Med 2007; 57: 362-8.
Wachowicz K. Evaluation of active and passive shimming in magnetic resonance imaging. Res Rep Nucl Med 2014; 4: 1.
Tijssen RHN, Philippens MEP, Paulson ES et al. MRI commissioning of 1.5T MR-linac systems - a multi-institutional study. Radiother Oncol 2019; 132: 114-20.
Ginn JS, Agazaryan N, Cao M et al. Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system. Phys Med Biol 2017; 62: 4525-40.
Coolens C, White MJ, Crum WR et al. Feasibility of free-breathing respiratory gated liver radiotherapy with MRI-derived models. Clin Oncol 2007; 19: S13.
Kirilova A, Lockwood G, Choi P et al. Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2008; 71: 1189-95.
Brix L, Ringgaard S, Sørensen TS, Poulsen PR. Three-dimensional liver motion tracking using real-time two-dimensional MRI. Med Phys 2014; 41: 042302.
Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012; 36: 55-72.
Aja-Fernández S, Vegas-Sánchez-Ferrero G, Tristán-Vega A. Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 2014; 32: 281-90.
Lee I-S, Preissl H, Enck P. How to perform and interpret functional magnetic resonance imaging studies in functional gastrointestinal disorders. J Neurogastroenterol Motil 2017; 23: 197-207.
Chuter RW, Whitehurst P, Choudhury A, van Herk M, McWilliam A. Technical note: investigating the impact of field size on patient selection for the 1.5T MR-linac. Med Phys 2017; 44: 5667-71.
Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol 2005; 50: 1363-76.
Uilkema S, van der Heide U, Sonke J-J, Moreau M, van Triest B, Nijkamp J. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. Med Phys 2015; 42: 7182-9.
Menten MJ, Fast MF, Nill S, Kamerling CP, McDonald F, Oelfke U. Lung stereotactic body radiotherapy with an MR-linac - quantifying the impact of the magnetic field and real-time tumor tracking. Radiother Oncol 2016; 119: 461-6.
Chuter RW, Pollitt A, Whitehurst P, MacKay RI, van Herk M, McWilliam A. Assessing MR-linac radiotherapy robustness for anatomical changes in head and neck cancer. Phys Med Biol 2018; 63: 125020.
Meijsing I, Raaymakers BW, Raaijmakers AJE et al. Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber. Phys Med Biol 2009; 54: 2993-3002.
O’Brien DJ, Roberts DA, Ibbott GS, Sawakuchi GO. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Med Phys 2016; 43: 4915.
Shortall J, Vasquez Osorio E, Van Herk M. EP-1810: assessing the dose significance of unplanned rectal filling in pelvic MR guided radiotherapy. Radiother Oncol 2018; 127: S973-4.
Choi CH, Park S-Y, Kim J-I et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol 2017; 90: 20160652.
Ramey SJ, Padgett KR, Lamichhane N et al. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Pract Radiat Oncol 2018; 8: e312-21.
Boldrini L, Placidi E, Dinapoli N et al. Hybrid Tri-Co-60 MRI radiotherapy for locally advanced rectal cancer: an in silico evaluation. Tech Innovat Patient Support Radiat Oncol 2018; 6: 5-10.
Christiansen RL, Hansen CR, Dahlrot RH et al. Plan quality for high-risk prostate cancer treated with high field magnetic resonance imaging guided radiotherapy. Phys Imaging Radiat Oncol 2018; 7: 1-8.
Nachbar M, Mönnich D, Kalwa P, Zips D, Thorwarth D, Gani C. Comparison of treatment plans for a high-field MRI-linac and a conventional linac for esophageal cancer. Strahlenther Onkol 2019; 195: 327-34.
Charaghvandi KR, Van’t Westeinde T, Yoo S et al. Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position. Clin Transl Radiat Oncol 2019; 14: 1-7.
Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol 2017; 12: 28.
Johnstone E, Wyatt JJ, Henry AM et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys 2018; 100: 199-217.
Hissoiny S, Raaijmakers AJE, Ozell B, Després P, Raaymakers BW. Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol 2011; 56: 5119-29.
van Loon J, Grutters J, Macbeth F. Evaluation of novel radiotherapy technologies: what evidence is needed to assess their clinical and cost effectiveness, and how should we get it? Lancet Oncol 2012; 13: e169-77.
Guckenberger M, Richter A, Wilbert J, Flentje M, Partridge M. Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int J Radiat Oncol Biol Phys 2011; 81: e275-82.
Chen AB. Comparative effectiveness research in radiation oncology: assessing technology. Semin Radiat Oncol 2014; 24: 25-34.
Martin AGR, Thomas SJ, Harden SV, Burnet NG. Evaluating competing and emerging technologies for stereotactic body radiotherapy and other advanced radiotherapy techniques. Clin Oncol 2015; 27: 251-9.
Verkooijen HM, Kerkmeijer LGW, Fuller CD et al. R-IDEAL: a framework for systematic clinical evaluation of technical innovations in radiation oncology. Front Oncol 2017; 7: 59.
Choudhury A, Budgell G, MacKay R et al. The future of image-guided radiotherapy. Clin Oncol 2017; 29: 662-6.
Tringale KR, Hattangadi-Gluth JA. Imaging (R)evolution: questioning our motivations behind rapid adoption of new technologies in radiation oncology. Int J Radiat Oncol Biol Phys 2018; 102: 691-3.
Nguyen PL, Gu X, Lipsitz SR et al. Cost implications of the rapid adoption of newer technologies for treating prostate cancer. J Clin Oncol 2011; 29: 1517-24.
Tree AC, Huddart R, Choudhury A. Magnetic resonance-guided radiotherapy - can we justify more expensive technology? Clin Oncol 2018; 30: 677-9.
Eccles CL, Campbell M. Keeping up with the hybrid magnetic resonance linear accelerators: how do radiation therapists stay current in the era of hybrid technologies? J Med Imaging Radiat Sci 2019; 50: 195-98.
Wee CW, An HJ, Kang H-C, Kim HJ, Wu H-G. Variability of gross tumor volume delineation for stereotactic body radiotherapy of the lung with Tri-60Co magnetic resonance image-guided radiotherapy system (ViewRay): a comparative study with magnetic resonance- and computed tomography-based target delineation. Technol Cancer Res Treat 2018; 17: 1533033818787383.
Midon AM, Bridge P, Warren M. What are the current and future requirements for magnetic resonance imaging interpretation skills in radiotherapy? A critical review. J Radiother Pract 2017; 16: 79-84.
Eccles CL, Nill S, Herbert T, Scurr E, McNair HA. Blurring the lines for better visualisation. Radiography 2019; 25: 91-3.
Maspero M, Seevinck PR, Willems NJW et al. Evaluation of gold fiducial marker manual localisation for magnetic resonance-only prostate radiotherapy. Radiat Oncol 2018; 13: 105.
Steiner E, Georg D, Goldner G, Stock M. Prostate and patient intrafraction motion: impact on treatment time-dependent planning margins for patients with endorectal balloon. Int J Radiat Oncol Biol Phys 2013; 86: 755-61.
Lamb J, Cao M, Kishan A et al. Online adaptive radiation therapy: implementation of a new process of care. Cureus 2017; 9: e1618.
Kashani R, Olsen JR. Magnetic resonance imaging for target delineation and daily treatment modification. Semin Radiat Oncol 2018; 28: 178-84.
Olberg S, Green O, Cai B et al. Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer. Radiat Oncol 2018; 13: 51.
Hunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive radiotherapy enabled by MRI guidance. Clin Oncol 2018; 30: 711-9.
Pathmanathan AU, van As NJ, Kerkmeijer LGW et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment? Int J Radiat Oncol Biol Phys 2018; 100: 361-73.
Winkel D, Bol GH, Werensteijn-Honingh AM et al. Evaluation of plan adaptation strategies for stereotactic radiotherapy of lymph node oligometastases using online magnetic resonance image guidance. Phys Imaging Radiat Oncol 2019; 9: 58-64.
Campbell M, Russell S, Erler D. Think unconventionally: staffing should not be a threat to MRI-guided radiation therapy. J Med Imaging Radiat Sci 2019; 50: S15.
Tyran M, Jiang N, Cao M et al. Retrospective evaluation of decision-making for pancreatic stereotactic MR-guided adaptive radiotherapy. Radiother Oncol 2018; 129: 319-25.
Bohoudi O, Bruynzeel AME, Senan S et al. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol 2017; 125: 439-44.
Pathmanathan AU, McNair HA, Schmidt MA et al. Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. Br J Radiol 2019; 92: 20180948.
Anders LC, Stieler F, Siebenlist K, Schäfer J, Lohr F, Wenz F. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer. Radiother Oncol 2012; 102: 68-73.
Teguh DN, Levendag PC, Voet PWJ et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys 2011; 81: 950-7.
Gambacorta MA, Valentini C, Dinapoli N et al. Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system. Acta Oncol 2013; 52: 1676-81.
Tao C-J, Yi J-L, Chen N-Y et al. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: a multi-institution clinical study. Radiother Oncol 2015; 115: 407-11.
Liang F, Qian P, Su K-H et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: an intelligent, multi-level fusion approach. Artif Intell Med 2018; 90: 34-41.
Lustberg T, van Soest J, Gooding M et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol 2018; 126: 312-7.
Beasley WJ, McWilliam A, Slevin NJ, Mackay RI, van Herk M. An automated workflow for patient-specific quality control of contour propagation. Phys Med Biol 2016; 61: 8577-86.
Tetar S, Bruynzeel A, Bakker R et al. Patient-reported outcome measurements on the tolerance of magnetic resonance imaging-guided radiation therapy. Cureus 2018; 10: e2236.
Brouwer CL, Steenbakkers RJHM, van der Schaaf A et al. Selection of head and neck cancer patients for adaptive radiotherapy to decrease xerostomia. Radiother Oncol 2016; 120: 36-40.
Tseng H-H, Luo Y, Ten Haken RK, El Naqa I. The role of machine learning in knowledge-based response-adapted radiotherapy. Front Oncol 2018; 8: 266.
Lambin P, Zindler J, Vanneste B et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol 2015; 54: 1289-300.
Rosenkrantz AB, Friedman K, Chandarana H et al. Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016; 206: 162-72.
Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: real-time MRI-guided proton therapy. Med Phys 2017; 44: e77-90.
Bentzen SM. High-tech in radiation oncology: should there be a ceiling? Int J Radiat Oncol Biol Phys 2004; 58: 320-30.
Fiorino C, Cozzarini C, Passoni P. The promise of adaptive radiotherapy for pelvic tumors: “too high cost for too little result” or “a low cost for a significant result”? Acta Oncol 2016; 55: 939-42.
Noble DJ, Burnet NG. The future of image-guided radiotherapy-is image everything? BJR Suppl 2018; 91: 20170894.
Charaghvandi RK, den Hartogh MD, van Ommen A-MLN et al. MRI-guided single fraction ablative radiotherapy for early-stage breast cancer: a brachytherapy versus volumetric modulated arc therapy dosimetry study. Radiother Oncol 2015; 117: 477-82.
Wojcieszynski AP, Hill PM, Rosenberg SA et al. Dosimetric comparison of real-time MRI-guided Tri-Cobalt-60 versus linear accelerator-based stereotactic body radiation therapy lung cancer plans. Technol Cancer Res Treat 2017; 16: 366-72.
Park JM, Park S-Y, Kim HJ, Wu H-G, Carlson J, Kim J-I. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol 2016; 120: 279-85.
Chen AM, Hsu S, Lamb J et al. MRI-guided radiotherapy for head and neck cancer: initial clinical experience. Clin Transl Oncol 2018; 20: 160-8.
Thomas DH, Santhanam A, Kishan AU et al. Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. Br J Radiol 2018; 91: 20170522.
Henke LE, Olsen JR, Contreras JA et al. Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Adv Radiat Oncol 2019; 4: 201-9.
Rosenberg SA, Henke LE, Shaverdian N et al. A multi-institutional experience of MR-guided liver stereotactic body radiation therapy. Adv Radiat Oncol 2019; 4: 142-9.
Tyran M, Cao M, Raldow AC et al. Stereotactic magnetic resonance-guided online adaptive radiotherapy for oligometastatic breast cancer: a case report. Cureus 2018; 10: e2368.
Gach HM, Green OL, Cuculich PS et al. Lessons learned from the first human low-field MRI guided radiation therapy of the heart in the presence of an implantable cardiac defibrillator. Pract Radiat Oncol 2019; 9: 274-79.
Werensteijn-Honingh AM, Kroon PS, Winkel D et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: Multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol 2019; 134: 50-4.

Auteurs

Stephen Chin (S)

Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.

Cynthia L Eccles (CL)

Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK.
Division of Cancer Sciences, The University of Manchester, Manchester, UK.

Alan McWilliam (A)

Division of Cancer Sciences, The University of Manchester, Manchester, UK.
Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Robert Chuter (R)

Division of Cancer Sciences, The University of Manchester, Manchester, UK.
Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Emma Walker (E)

Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Philip Whitehurst (P)

Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Joseph Berresford (J)

Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Marcel Van Herk (M)

Division of Cancer Sciences, The University of Manchester, Manchester, UK.
Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.

Peter J Hoskin (PJ)

Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
Division of Cancer Sciences, The University of Manchester, Manchester, UK.

Ananya Choudhury (A)

Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
Division of Cancer Sciences, The University of Manchester, Manchester, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH