Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules.
Antineoplastic Agents
/ administration & dosage
Cell Line, Tumor
Delayed-Action Preparations
/ chemistry
Docetaxel
/ administration & dosage
Doxorubicin
/ administration & dosage
Gold
/ chemistry
Humans
Hyperthermia, Induced
Light
Nanocapsules
/ chemistry
Nanotubes
/ chemistry
Photochemotherapy
Phototherapy
Serum Albumin, Human
/ chemistry
Triple Negative Breast Neoplasms
/ therapy
Gold nanorods
Human serum albumin nanoparticles
Multimodal therapy
Photo-therapy
Stimuli-responsiveness
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
15 Oct 2019
15 Oct 2019
Historique:
received:
25
04
2019
accepted:
24
09
2019
entrez:
17
10
2019
pubmed:
17
10
2019
medline:
4
3
2020
Statut:
epublish
Résumé
Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity. We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism. This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.
Sections du résumé
BACKGROUND
BACKGROUND
Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity.
RESULTS
RESULTS
We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism.
CONCLUSIONS
CONCLUSIONS
This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.
Identifiants
pubmed: 31615570
doi: 10.1186/s12951-019-0538-3
pii: 10.1186/s12951-019-0538-3
pmc: PMC6794818
doi:
Substances chimiques
Antineoplastic Agents
0
Delayed-Action Preparations
0
Nanocapsules
0
Docetaxel
15H5577CQD
Gold
7440-57-5
Doxorubicin
80168379AG
Serum Albumin, Human
ZIF514RVZR
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
106Subventions
Organisme : MINECO
ID : MAT2016-80266R
Organisme : MINECO
ID : MAT2015-74381-JIN
Organisme : Xunta de Galicia
ID : ED431E 2018/08
Organisme : Xunta de Galicia
ID : ED431C 2018/26
Références
J Control Release. 2019 Aug 10;307:247-260
pubmed: 31252036
ACS Nano. 2016 Feb 23;10(2):2436-46
pubmed: 26766814
Adv Mater. 2016 Jan 13;28(2):245-53
pubmed: 26551334
AAPS PharmSciTech. 2019 May 15;20(5):188
pubmed: 31093777
Adv Sci (Weinh). 2018 May 09;5(7):1800155
pubmed: 30027047
Nat Med. 1998 Jun;4(6):655-7
pubmed: 9623964
Int J Nanomedicine. 2015 Feb 13;10:1291-306
pubmed: 25709449
ACS Nano. 2016 Jan 26;10(1):1355-62
pubmed: 26741791
Neurophotonics. 2016 Jan;3(1):015001
pubmed: 27115020
Pharm Res. 2010 Nov;27(11):2421-32
pubmed: 20700632
Chemistry. 2018 Feb 9;24(9):2098-2102
pubmed: 29284069
Colloids Surf B Biointerfaces. 2017 Jan 1;149:250-259
pubmed: 27768915
Mol Pharm. 2011 Aug 1;8(4):1257-65
pubmed: 21630670
ACS Nano. 2015 Jan 27;9(1):52-61
pubmed: 25493329
N Engl J Med. 2007 Jul 19;357(3):299-300
pubmed: 17634467
Chem Soc Rev. 2006 Nov;35(11):1084-94
pubmed: 17057837
J Nanobiotechnology. 2019 Feb 2;17(1):23
pubmed: 30711005
Int J Nanomedicine. 2014 Sep 15;9:4357-73
pubmed: 25258527
J Control Release. 2012 Jul 20;161(2):505-22
pubmed: 22353619
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8
pubmed: 12629218
Nature. 2005 Jul 28;436(7050):568-72
pubmed: 16049491
Drug Des Devel Ther. 2018 Jul 11;12:2149-2161
pubmed: 30034219
Bioorg Med Chem. 2011 Apr 1;19(7):2130-5
pubmed: 21421321
Mol Cancer Ther. 2012 Oct;11(10):2233-42
pubmed: 22896668
J Control Release. 2014 Sep 28;190:331-6
pubmed: 24637463
Colloids Surf B Biointerfaces. 2016 May 1;141:223-232
pubmed: 26854581
Biomacromolecules. 2005 Mar-Apr;6(2):1154-8
pubmed: 15762689
Adv Exp Med Biol. 2007;608:1-22
pubmed: 17993229
Cancer Res. 2014 May 15;74(10):2655-62
pubmed: 24778418
J Am Chem Soc. 2012 Aug 15;134(32):13396-403
pubmed: 22803823
Biomed Microdevices. 2009 Feb;11(1):49-63
pubmed: 18663578
Adv Enzyme Regul. 1984;22:27-55
pubmed: 6382953
Biomaterials. 2016 Feb;79:46-55
pubmed: 26695116
Biomater Sci. 2013 Mar 4;1(3):285-293
pubmed: 32481853
ACS Nano. 2014 Nov 25;8(11):11591-602
pubmed: 25333568
Theranostics. 2015 Apr 20;5(8):818-33
pubmed: 26000055
Small. 2009 Dec;5(23):2673-7
pubmed: 19780069
Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:114-128
pubmed: 30606517
ACS Nano. 2017 Jun 27;11(6):6102-6113
pubmed: 28605594
Adv Drug Deliv Rev. 2010 Aug 30;62(11):1064-79
pubmed: 20691229
J Control Release. 2019 Sep 10;309:72-81
pubmed: 31306678
Nano Lett. 2016 Jan 13;16(1):177-81
pubmed: 26654461
Theranostics. 2017 Apr 10;7(6):1650-1662
pubmed: 28529642
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3110-E3118
pubmed: 28356516
Nanomedicine. 2017 Jul;13(5):1673-1683
pubmed: 28300658
Acc Chem Res. 2008 Dec;41(12):1578-86
pubmed: 18447366
Int J Nanomedicine. 2010 Sep 20;5:525-32
pubmed: 20957217
J Am Chem Soc. 2011 Aug 10;133(31):12247-55
pubmed: 21736347
Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:669-678
pubmed: 30033301
Chem Rev. 2013 Mar 13;113(3):1904-2074
pubmed: 23432378
Theranostics. 2017 Oct 6;7(18):4410-4423
pubmed: 29158836
Mol Pharm. 2015 Feb 2;12(2):301-13
pubmed: 25557580
Small. 2016 Mar 9;12(10):1378-90
pubmed: 26763197
Nat Biotechnol. 1999 Jan;17(1):94-5
pubmed: 9920278
Int J Pharm. 2013 Mar 10;445(1-2):47-57
pubmed: 23380628
Nanotechnol Sci Appl. 2016 Dec 28;10:11-21
pubmed: 28096662
J Mater Chem B. 2014 Oct 28;2(40):6967-6977
pubmed: 32262106
Clin Pharmacol Ther. 2008 Jan;83(1):26-36
pubmed: 18091763
Mol Pharm. 2013 May 6;10(5):2071-8
pubmed: 23590802
Int J Nanomedicine. 2012;7:1511-23
pubmed: 22619509
ACS Nano. 2014 Mar 25;8(3):2725-38
pubmed: 24571629
ACS Biomater Sci Eng. 2018 Jul 9;4(7):2424-2434
pubmed: 33435106
Breast Cancer Res Treat. 2008 Sep;111(2):203-8
pubmed: 17990102
Cancer Sci. 2015 May;106(5):497-504
pubmed: 25728850
Adv Healthc Mater. 2014 Aug;3(8):1309-25
pubmed: 24764284
Int J Nanomedicine. 2017 Mar 16;12:2081-2108
pubmed: 28356731