Hyperpolarized
SPIONs
alveolar-like macrophages
hyperpolarized
lung
xenon
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
11
03
2019
revised:
18
07
2019
accepted:
25
08
2019
pubmed:
27
9
2019
medline:
15
5
2021
entrez:
27
9
2019
Statut:
ppublish
Résumé
To measure regional changes in hyperpolarized MRI was performed in 6 healthy mechanically ventilated rats before instillation, as well as 5 min and 1 h after instillation of 4 million SPION-labeled ALMs into either the left or right lung. Regions of signal loss were observed immediately after instillation of unlabeled and SPION-labeled ALMs and persisted at least 1 h in the case of the SPION-labeled ALMs. This was reflected in the measurements of Hyperpolarized
Substances chimiques
Magnetite Nanoparticles
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1356-1367Informations de copyright
© 2019 International Society for Magnetic Resonance in Medicine.
Références
Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3:1-5.
Segers V, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937-942.
Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders- how to make it work. Nature Med. 2004;10:S42-S50.
Kim SU, de Vellis J. Stem cell-based therapy in neurological diseases: a review. J Neurosci Res. 2009;87:2183-2200.
van Haaften T, Byrne R, Bonnet S, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180:1131-1142.
Matthay MA, Thompson BT, Read EJ, et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest. 2010;138:965-972.
Masterson C, Jerkic M, Curley GF, Laffey JG. Mesenchymal stromal cell therapies: potential and pitfalls for ARDS. Minerva Anestesiol. 2015;81:179-194.
Guth AM, Janssen WJ, Bosio CM, Crouch EC, Hensen PM, Dow SW. Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2009;296:936-946.
Bowden DH. The alveolar macrophage. Environ Health Perspect. 1984;55:327-341.
Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol. 2003;81:289-296.
Blackwell TS, Hipps AN, Yamamoto Y, et al. NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis. J Immunol. 2011;187:2740-2747.
Bruscia EM, Zhang P, Ferreira E, et al. Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator -/- mice. Am J Respir Cell Mol Biol. 2009;40:295-304.
Litvack ML, Wigle TJ, Lee J, et al. Alveolar-like stem-cell derived Myb- macrophages promote recovery and survival in airway disease. Am J Respir Crit Care Med. 2016;193:1219-1229.
Thompson M, Wall DM, Hicks RJ, Prince HM. In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging. 2005;49:339-348.
Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14:431-444.
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular imaging with MRI. Top Magn Reson Imaging. 2016;25:177-186.
Wang YX, Idee JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg. 2017;7:88-122.
Neuwelt A, Sidhu N, Hu CA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol. 2015;204:W302-W313.
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular imaging with MRI. Top Magn Reson Imaging. 2016;25:177-186.
Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ. Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging. 2007;26:144-151.
Mun HS, Kang HJ, Lim KH, et al. Graft rejection in the xenogeneic transplantation of mice: diagnosis with in vivo MR imaging using the homing trait of macrophages. Xenotransplantation. 2008;14:218-224.
Al Faraj A, Shaik AS, Alnafea M. Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols. BMC Med Imaging. 2015;15:16.
Möller HE, Chen XJ, Saam B, et al. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med. 2002;47:1029-1051.
Happer W, Miron E, Schaefer S, Schreiber D, van Wijngaarden WA, Zeng X. Polarization of the nuclear spins of noble-gas atoms by spin-exchange with optically pumped alkali-metal atoms. Phys Rev A. 1984;29:3092-3110.
Parra-Robles J, Viqueira WD, Xu X, Ouriadov A, Santyr GE. Theoretical prediction and experimental measurement of the field dependence of the apparent transverse relaxation of hyperpolarized moble gases in lungs. J Mag Reson. 2008;192:85-91.
Branca RT, Cleveland ZI, Fubara B, et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci U S A. 2010;107:3693-3697.
Zanette B, Striiat E, Jelveh S, Hope A, Santyr G. Physiological gas exchange mapping of hyperpolarized 129Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury. Med Phys. 2018;45:803-816.
Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G. Detection of regional radiation-induced lung injury using hyperpolarized Xe129 chemical shift imaging in a rat model involving partial lung irradiation: proof-of-concept demonstration. Adv Radiat Oncol. 2017;2:475-484.
Santyr GE, Lam WW, Ouriadov A. Rapid and efficient mapping of regional ventilation in the rat lung using hyperpolarized 3He with flip angle variation for offset of RF and relaxation (FAVOR). Magn Reson Med. 2008;59:1304-1310.
Kavet RI, Brain JD. Phagocytosis: quantification of rates and intercellular heterogeneity. J Appl Physiol. 1977;42:432-437.
Foster-Gareau P, Heyn C, Alejski A, Rutt BK. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med. 2003;46:968-971.
Heyn C, Bowen CV, Rutt BK, Foster PJ. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med. 2005;53:312-320.
Kuethe DO, Adolphi NL, Fukushima E. Short data-acquisition times improve projection images of lung tissue. Magn Reson Med. 2007;57:1058-1064.
Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32:749-763.
Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med. 2002;48:52-61.
Ziener CH, Bauer WR, Jakob PM. Transverse relaxation of cells labeled with magnetic nanoparticles. Magn Reson Med. 2005;54:702-706.
Belton PS, Hills BP. The effects of diffusive exchange in heterogeneous systems on N.M.R. line shapes and relaxation processes. Mol Phys. 1987;61:999-1018.
Santyr G, Kanhere N, Morgado F, Rayment J, Ratjen F, Couch MJ. Hyperpolarized gas magnetic resonance imaging of pediatric cystic fibrosis lung disease. Acad Radiol. 2019;26:344-354.
Mugler JP, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging. 2013;37:313-331.
Carot C, Robert P, Idée J, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471-1504.
Hartl D, Koller B, Mehlhorn AT, et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol. 2007;119:1258-1266.
Kraitchman DL, Bulte J. Imaging of stem cells using MRI. Basic Res Cardiol. 2008;103:105-113.