Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal-Organic Framework.
crystalline sponge method
eugenol
metal-organic frameworks
nanoaggregates
solvent-to-guest exchange
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
25 Nov 2019
25 Nov 2019
Historique:
received:
19
06
2019
revised:
30
08
2019
pubmed:
25
9
2019
medline:
25
9
2019
entrez:
25
9
2019
Statut:
ppublish
Résumé
The crystalline sponge method (CSM) is primarily used for structural determination by single-crystal X-ray diffraction of a single analyte encapsulated inside a porous MOF. As the host-guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF-to-eugenol exchange process.
Identifiants
pubmed: 31549464
doi: 10.1002/anie.201907621
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
17342-17350Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski, S. S. Moore, D. J. Cram, J. Am. Chem. Soc. 1977, 99, 2564-2571.
M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418-3438;
Angew. Chem. 2009, 121, 3470-3490.
G. Tabacchi, ChemPhysChem 2018, 19, 1249-1297.
K. Rissanen, Chem. Soc. Rev. 2017, 46, 2638.
J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 2005, 44, 4844-4870;
Angew. Chem. 2005, 117, 4922-4949.
V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348-3391;
Angew. Chem. 2000, 112, 3484-3530.
O. M. Yaghi, G. Li, H. Li, Nature 1995, 378, 703-706.
S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249-267.
Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349-358.
A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H.-C. Zhou, Chem. Soc. Rev. 2018, 47, 8611.
S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, et al., Adv. Mater. 2018, 30, 1704303.
C. S. Diercks, M. J. Kalmutzki, N. J. Diercks, O. M. Yaghi, ACS Cent. Sci. 2019, 6, 57.
L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443-446.
A. Schoedel, Z. Ji, O. M. Yaghi, Nat. Energy 2016, 1, 16034.
T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 2016, 1, 16059.
A. G. Slater, A. I. Cooper, Science 2015, 348, aaa8075.
Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita, Nature 2013, 495, 461-466.
N. Wada, R. D. Kersten, T. Iwai, S. Lee, F. Sakurai, T. Kikuchi, D. Fujita, M. Fujita, J.-K. Weng, Angew. Chem. Int. Ed. 2018, 57, 3671-3675;
Angew. Chem. 2018, 130, 3733-3737.
S. Sairenji, T. Kikuchi, M. A. Abozeid, S. Takizawa, H. Sasai, Y. Ando, K. Ohmatsu, T. Ooi, M. Fujita, Chem. Sci. 2017, 8, 5132-5136.
Y. Inokuma, T. Ukegawa, M. Hoshino, M. Fujita, Chem. Sci. 2016, 7, 3910-3913.
W. J. Gee, L. E. Hatcher, C. A. Cameron, C. Stubbs, M. R. Warren, A. D. Burrows, P. R. Raithby, Inorg. Chem. 2018, 57, 4959-4965.
N. Hosono, A. Terashima, S. Kusaka, R. Matsuda, S. Kitagawa, Nat. Chem. 2019, 11, 109-116.
E. J. Carrington, C. A. McAnally, A. J. Fletcher, S. P. Thompson, M. Warren, L. Brammer, Nat. Chem. 2017, 9, 882-889.
J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, et al., Nature 2015, 527, 357-361.
G. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380.
A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062-6096.
X.-Y. Dong, H.-L. Huang, J.-Y. Wang, H.-Y. Li, S.-Q. Zang, Chem. Mater. 2018, 30, 2160-2167.
Y. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, et al., Science 2013, 339, 193-196.
Y. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2011, 2, 168.
S. Lee, H.-B. Bu, S. A. Alshmimri, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 8958-8964.
Q. Du, J. Peng, P. Wu, H. He, TrAC Trends Anal. Chem. 2018, 102, 290-310.
W. J. Gee, Dalton Trans. 2017, 46, 15979-15986.
X.-F. Gu, Y. Zhao, K. Li, M.-X. Su, F. Yan, B. Li, Y.-X. Du, B. Di, J. Chromatogr. A 2016, 1474, 130-137.
G. Brunet, D. A. Safin, M. Z. Aghaji, K. Robeyns, I. Korobkov, T. K. Woo, M. Murugesu, Chem. Sci. 2017, 8, 3171-3177.
M. T. Huxley, A. Burgun, H. Ghodrati, C. J. Coghlan, A. Lemieux, N. R. Champness, D. M. Huang, C. J. Doonan, C. J. Sumby, J. Am. Chem. Soc. 2018, 140, 6416-6425.
C. Duan, M. Wei, D. Guo, C. He, Q. Meng, J. Am. Chem. Soc. 2010, 132, 3321-3330.
N. Nijem, P. Canepa, U. Kaipa, K. Tan, K. Roodenko, S. Tekarli, J. Halbert, I. W. H. Oswald, R. K. Arvapally, C. Yang, et al., J. Am. Chem. Soc. 2013, 135, 12615-12626.
W. M. Bloch, N. R. Champness, C. J. Doonan, Angew. Chem. Int. Ed. 2015, 54, 12860-12867;
Angew. Chem. 2015, 127, 13052-13059.
A. Nuñez-Lopez, M. Galbiati, N. M. Padial, C. R. Ganivet, S. Tatay, E. Pardo, D. Armentano, C. Martí-Gastaldo, Angew. Chem. Int. Ed. 2019, 58, 9179-9183;
Angew. Chem. 2019, 131, 9277-9281.
G. Q. Zheng, P. M. Kenney, L. K. T. Lam, J. Nat. Prod. 1992, 55, 999-1003.
F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, Food Chem. Toxicol. 2008, 46, 446-475.
M. B. Isman, ACS Symp. Ser. 2014, 1172, 21-30.
M. Shivanna, Q. Yang, A. Bajpai, M. J. Zaworotko, E. Patyk-kazmierczak, Nat. Commun. 2018, 9, 1-7.
D. Balestri, D. Capucci, N. Demitri, A. Bacchi, P. Pelagatti, Materials 2017, 10, 727.
P. P. Mazzeo, L. Maini, D. Braga, G. Valenti, F. Paolucci, M. Marcaccio, A. Barbieri, B. Ventura, Eur. J. Inorg. Chem. 2013, 4459-4465.
I. Bassanetti, S. Bracco, A. Comotti, M. Negroni, C. Bezuidenhout, S. Canossa, P. P. Mazzeo, L. Marchí, P. Sozzani, J. Mater. Chem. A 2018, 6, 14231.
D. Balestri, A. Bacchi, P. Scilabra, P. Pelagatti, Inorg. Chim. Acta 2018, 470, 416-422.
D. Balestri, I. Bassanetti, S. Canossa, C. Gazzurelli, A. Bacchi, S. Bracco, A. Comotti, P. Pelagatti, Cryst. Growth Des. 2018, 18, 6824-6832.
D. Balestri, D. Costa, A. Bacchi, L. Carlucci, P. Pelagatti, Polyhedron 2018, 153, 278-285.
A. P. Katsoulidis, D. Antypov, G. F. S. Whitehead, E. J. Carrington, D. J. Adams, N. G. Berry, G. R. Darling, M. S. Dyer, M. J. Rosseinsky, Nature 2019, 565, 213-217.
H. B. Bürgi, J. D. Dunitz, Structure Correlation, Vol. 1, Wiley-VCH, Weinheim, 2008, pp. 163-204.
A. Longarte, C. Redondo, J. A. Fernández, F. Castaño, J. Chem. Phys. 2005, 122, 164304.
CCDC 1901491, 1901492, 1901493, 1901494, 1901495 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.