Brain regulation of emotional conflict predicts antidepressant treatment response for depression.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
25
05
2019
accepted:
16
08
2019
pubmed:
25
9
2019
medline:
25
2
2020
entrez:
25
9
2019
Statut:
ppublish
Résumé
The efficacy of antidepressant treatment for depression is controversial due to the only modest superiority demonstrated over placebo. However, neurobiological heterogeneity within depression may limit overall antidepressant efficacy. We sought to identify a neurobiological phenotype responsive to antidepressant treatment by testing pretreatment brain activation during response to, and regulation of, emotional conflict as a moderator of the clinical benefit of the antidepressant sertraline versus placebo. Using neuroimaging data from a large randomized controlled trial, we found widespread moderation of clinical benefits by brain activity during regulation of emotional conflict, in which greater downregulation of conflict-responsive regions predicted better sertraline outcomes. Treatment-predictive machine learning using brain metrics outperformed a model trained on clinical and demographic variables. Our findings demonstrate that antidepressant response is predicted by brain activity underlying a key self-regulatory emotional capacity. Leveraging brain-based measures in psychiatry will forge a path toward better treatment personalization, refined mechanistic insights and improved outcomes.
Identifiants
pubmed: 31548678
doi: 10.1038/s41562-019-0732-1
pii: 10.1038/s41562-019-0732-1
pmc: PMC6908746
mid: NIHMS1537676
doi:
Substances chimiques
Antidepressive Agents
0
Antidepressive Agents, Second-Generation
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1319-1331Subventions
Organisme : NIMH NIH HHS
ID : U01 MH092221
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH092250
Pays : United States
Références
Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiat. 75, 336–346 (2018).
pubmed: 29450462
pmcid: 5875313
Lopez-Munoz, F. & Alamo, C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr. Pharm. Des. 15, 1563–1586 (2009).
pubmed: 19442174
Moore, T. J. & Mattison, D. R. Adult utilization of psychiatric drugs and differences by sex, age, and race. JAMA Intern. Med. 177, 274–275 (2017).
pubmed: 27942726
Kirsch, I. The Emperor’s New Drugs: Exploding the Antidepressant Myth (Random House, 2009).
Khan, A. & Brown, W. A. Antidepressants versus placebo in major depression: an overview. World Psychiatry 14, 294–300 (2015).
pubmed: 26407778
pmcid: 4592645
Kirsch, I. et al. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. PLoS Med. 5, e45 (2008).
pubmed: 18303940
pmcid: 2253608
Fournier, J. C. et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303, 47–53 (2010).
pubmed: 20051569
pmcid: 3712503
Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 1357–1366 (2018).
pubmed: 29477251
pmcid: 5889788
Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).
pubmed: 27918562
Kraemer, H. C. Messages for clinicians: moderators and mediators of treatment outcome in randomized clinical trials. Am. J. Psychiatry 173, 672–679 (2016).
pubmed: 26988629
Etkin, A., Buchel, C. & Gross, J. J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 16, 693–700 (2015).
pubmed: 26481098
Gross, J. J. Handbook of Emotion Regulation (Guilford Press, 2014).
Gyurak, A., Gross, J. J. & Etkin, A. Explicit and implicit emotion regulation: a dual-process framework. Cogn. Emot. 25, 400–412 (2011).
pubmed: 21432682
pmcid: 3280343
Xu, M., Xu, G. & Yang, Y. Neural systems underlying emotional and non-emotional interference processing: an ALE meta-analysis of functional neuroimaging studies. Front. Behav. Neurosci. 10, 220 (2016).
pubmed: 27895564
pmcid: 5109402
Egner, T., Etkin, A., Gale, S. & Hirsch, J. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb. Cortex 18, 1475–1484 (2008).
pubmed: 17940084
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R. & Hirsch, J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51, 871–882 (2006).
pubmed: 16982430
pmcid: 16982430
Maier, M. E. & di Pellegrino, G. Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J. Cogn. Neurosci. 24, 2070–2079 (2012).
pubmed: 22721382
Chechko, N. et al. Brain circuitries involved in emotional interference task in major depression disorder. J. Affect. Disord. 149, 136–145 (2013).
pubmed: 23394712
Chechko, N. et al. Unstable prefrontal response to emotional conflict and activation of lower limbic structures and brainstem in remitted panic disorder. PLoS One 4, e5537 (2009).
pubmed: 19462002
pmcid: 2680057
Etkin, A., Prater, K. E., Hoeft, F., Menon, V. & Schatzberg, A. F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167, 545–554 (2010).
pubmed: 20123913
pmcid: 4367202
Etkin, A. & Schatzberg, A. F. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am. J. Psychiatry 168, 968–978 (2011).
pubmed: 21632648
Xue, S., Wang, S., Kong, X. & Qiu, J. Abnormal neural basis of emotional conflict control in treatment-resistant depression. Clin. EEG Neurosci. 48, 103–110 (2017).
pubmed: 26892803
Widge, A. S. et al. Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472 (2017).
pubmed: 27485972
Gyurak, A. et al. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol. Psychiatry 79, 274–281 (2016).
pubmed: 25891220
Williams, L. M. et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology 40, 2398–2408 (2015).
pubmed: 25824424
pmcid: 4538354
Etkin, A. et al. A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40, 1332–1342 (2015).
pubmed: 25547711
pmcid: 4397406
Langenecker, S. A. et al. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol. Psychiatry 62, 1272–1280 (2007).
pubmed: 17585888
pmcid: 2860742
Pizzagalli, D. A. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36, 183–206 (2011).
Trivedi, M. H. et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J. Psychiatr. Res. 78, 11–23 (2016).
pubmed: 27038550
pmcid: 6100771
Goldstein-Piekarski, A. N. et al. Intrinsic functional connectivity predicts remission on antidepressants: a randomized controlled trial to identify clinically applicable imaging biomarkers. Transl. Psychiatry 8, 57 (2018).
pubmed: 29507282
pmcid: 5838245
Pizzagalli, D. et al. The incremental predictive validity of rostral anterior cingulate cortex activity in relation to symptom improvement in depression: a randomized clinical trial. JAMA Psychiat. 75, 547–554 (2018).
Rush, A. J. et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 54, 573–583 (2003).
pubmed: 12946886
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R. & Jacobs, G. A. Manual for the State-Trait Anxiety Inventory (Consulting Psychologists Press, 1983).
Wardenaar, K. J. et al. Development and validation of a 30-item short adaptation of the Mood and Anxiety Symptoms Questionnaire (MASQ). Psychiatry Res. 179, 101–106 (2010).
pubmed: 20472297
Bernstein, D. P. et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatry 151, 1132–1136 (1994).
pubmed: 8037246
Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).
pubmed: 14963333
Korb, A. S., Hunter, A. M., Cook, I. A. & Leuchter, A. F. Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clin. Neurophysiol. 120, 1313–1319 (2009).
pubmed: 19539524
pmcid: 2710394
Clayson, P. E. & Larson, M. J. Adaptation to emotional conflict: evidence from a novel face emotion paradigm. PLoS One 8, e75776 (2013).
pubmed: 24073278
pmcid: 3779161
Tang, D., Hu, L., Chen, A., Clayson, P. E. & Larson, M. J. The neural oscillations of conflict adaptation in the human frontal region. Biol. Psychol. 93, 364–372 (2013).
pubmed: 23570676
Larson, M. J., Clawson, A., Clayson, P. E. & Baldwin, S. A. Cognitive conflict adaptation in generalized anxiety disorder. Biol. Psychol. 94, 408–418 (2013).
pubmed: 24005064
Suzuki, K. & Shinoda, H. Transition from reactive control to proactive control across conflict adaptation: an sLORETA study. Brain Cogn. 100, 7–14 (2015).
pubmed: 26432378
Voigt, J., Carpenter, L. & Leuchter, A. Cost effectiveness analysis comparing repetitive transcranial magnetic stimulation to antidepressant medications after a first treatment failure for major depressive disorder in newly diagnosed patients: a lifetime analysis. PLoS One 12, e0186950 (2017).
pubmed: 29073256
pmcid: 5658110
Nguyen, K. H. & Gordon, L. G. Cost-effectiveness of repetitive transcranial magnetic stimulation versus antidepressant therapy for treatment-resistant depression. Value Health 18, 597–604 (2015).
pubmed: 26297087
O’Reardon, J. P. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry 62, 1208–1216 (2007).
pubmed: 17573044
George, M. S. et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch. Gen. Psychiatry 67, 507–516 (2010).
pubmed: 20439832
Pescosolido, B. A. et al. “A disease like any other”? A decade of change in public reactions to schizophrenia, depression, and alcohol dependence. Am. J. Psychiatry 167, 1321–1330 (2010).
pubmed: 20843872
pmcid: 4429867
Insel, T. R. & Cuthbert, B. N. Medicine. Brain disorders? Precisely. Science 348, 499–500 (2015).
pubmed: 25931539
First, M., Spitzer, R., Gibbon, M. & William, J. Structured Clinical Interview forDSM-IV-TR Axis 1 Disorders, Research Version, Patient Edition (SCID-I/P) (New York State Psychiatric Institute Press, 2002).
Ekman, P. & Friesen, W. V. Pictures of Facial Affect (Consulting Psychologists, 1976).
Gratton, G., Coles, M. G. & Donchin, E. Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506 (1992).
pubmed: 1431740
Egner, T. & Hirsch, J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat. Neurosci. 8, 1784–1790 (2005).
pubmed: 16286928
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).
Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).
pubmed: 15501092
Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).
Fonzo, G. A. et al. PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. Am. J. Psychiatry 174, 1163–1174 (2017).
pubmed: 28715908
pmcid: 5711543
Fonzo, G. A. et al. Selective effects of psychotherapy on frontopolar cortical function in PTSD. Am. J. Psychiatry 174, 1175–1184 (2017).
pubmed: 28715907
pmcid: 5711612
Fox, J. Applied Regression Analysis and Generalized Linear Models 2nd edn (Sage Publications, 2008).
Loy, A., Hofmann, H. & Cook, D. Model choice and diagnostics for linear mixed-effects models using statistics on street corners. J. Comput. Graph. Stat. 26, 478–492 (2017).
Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 1.8.12. https://CRAN.R-project.org/package=psych (2018).
IBM SPSS Statistics for Macintosh v.21.0 (IBM Corp, 2012).
Huber, P. J. Robust regression: asymptotics, conjectures and monte carlo. Ann. Stat. 1, 799–821 (1973).
Wager, T. D., Keller, M. C., Lacey, S. C. & Jonides, J. Increased sensitivity in neuroimaging analyses using robust regression. Neuroimage 26, 99–113 (2005).
pubmed: 15862210
R: a language and environment for statistical computing v. 3.2.3 (R Foundation for Statistical Computing, 2015).
Tabelow, K. & Polzehl, J. Statistical parametric maps for functional MRI experiments in R: the package fMRI. 44, 21 (2011).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-141. https://CRAN.R-project.org/package=nlme (2019).
Tipping, M. E. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001).
Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–288 (1996).
Cawley, G. C. & Talbot, N. L. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 8, 841–861 (2007).
Wipf, D. P. & Rao, B. D. Sparse bayesian learning for basis selection. IEEE Trans. Signal Process. 52, 2153–2164 (2004).
Zhang, Y. et al. Sparse bayesian classification of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27, 2256–2267 (2016).
pubmed: 26415189
Cawley, G. C. & Talbot, N. L. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 22, 2348–2355 (2006).
pubmed: 16844704
Li, Y., Campbell, C. & Tipping, M. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics 18, 1332–1339 (2002).
pubmed: 12376377
van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Soft. 45, 1–67 (2011).
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
Choi, E. Y., Yeo, B. T. & Buckner, R. L. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263 (2012).
pubmed: 22832566
pmcid: 3545026
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).
pubmed: 21795627
pmcid: 3214121
Patenaude, B., Smith, S. M., Kennedy, D. N. & Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907–922 (2011).
pubmed: 21352927
pmcid: 3417233
Chen, A. C. & Etkin, A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology 38, 1889–1898 (2013).
pubmed: 23673864
pmcid: 3746693
Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).
pubmed: 12808459