Understanding the Modus Operandi of MicroRNA Regulatory Clusters.

functional enrichment gene regulatory networks mRNA fold-change microRNA modules microRNA regulation

Journal

Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052

Informations de publication

Date de publication:
18 09 2019
Historique:
received: 17 05 2019
revised: 06 07 2019
accepted: 09 07 2019
entrez: 22 9 2019
pubmed: 22 9 2019
medline: 2 6 2020
Statut: epublish

Résumé

MicroRNAs (miRNAs) are non-coding RNAs that regulate a wide range of biological pathways by post-transcriptionally modulating gene expression levels. Given that even a single miRNA may simultaneously control several genes enrolled in multiple biological functions, one would expect that these tiny RNAs have the ability to properly sort among distinctive cellular processes to drive protein production. To test this hypothesis, we scrutinized previously published microarray datasets and clustered protein-coding gene expression profiles according to the intensity of fold-change levels caused by the exogenous transfection of 10 miRNAs (miR-1, miR-7, miR-9, miR-124, miR-128a, miR-132, miR-133a, miR-142, miR-148b, miR-181a) in a human cell line. Through an in silico functional enrichment analysis, we discovered non-randomic regulatory patterns, proper of each cluster identified. We demonstrated that miRNAs are capable of equivalently modulate the expression signatures of target genes in regulatory clusters according to the biological function they are assigned to. Moreover, target prediction analysis applied to ten vertebrate species, suggest that such miRNA regulatory modus operandi is evolutionarily conserved within vertebrates. Overall, we discovered a complex regulatory cluster-module strategy driven by miRNAs, which relies on the controlled intensity of the repression over distinct targets under specific biological contexts. Our discovery helps to clarify the mechanisms underlying the functional activity of miRNAs and makes it easier to take the fastest and most accurate path in the search for the functions of miRNAs in any distinct biological process of interest.

Identifiants

pubmed: 31540501
pii: cells8091103
doi: 10.3390/cells8091103
pmc: PMC6770051
pii:
doi:

Substances chimiques

MicroRNAs 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Références

Nature. 2016 Mar 17;531(7594):390-394
pubmed: 26950602
Nat Rev Mol Cell Biol. 2014 Sep;15(9):565-76
pubmed: 25118717
J Biol Chem. 2015 Oct 9;290(41):24650-6
pubmed: 26304123
Nucleic Acids Res. 2018 Jan 4;46(D1):D239-D245
pubmed: 29156006
Genome Res. 2009 Jan;19(1):92-105
pubmed: 18955434
Nat Cell Biol. 2009 Sep;11(9):1143-9
pubmed: 19684575
PLoS One. 2011;6(5):e20220
pubmed: 21637849
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W96-102
pubmed: 20484371
Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88
pubmed: 23800994
Biochim Biophys Acta. 2016 Apr;1859(4):650-62
pubmed: 26926595
Cell Cycle. 2014;13(5):772-81
pubmed: 24398561
Nature. 1993 Apr 22;362(6422):749-51
pubmed: 8097018
Nature. 2010 Feb 25;463(7284):1084-8
pubmed: 20118916
BMC Genomics. 2011 Mar 06;12:138
pubmed: 21375780
Nat Biotechnol. 2003 Jun;21(6):635-7
pubmed: 12754523
Nucleic Acids Res. 2014 Feb;42(3):e17
pubmed: 24357407
Cancer Cell Int. 2015 Apr 02;15:38
pubmed: 25960691
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2946-50
pubmed: 18287013
Nat Genet. 2007 Oct;39(10):1278-84
pubmed: 17893677
Nat Genet. 2002 Apr;30(4):363-4
pubmed: 11896390
Nucleic Acids Res. 2012 Feb;40(4):1695-707
pubmed: 22053081
Cell. 2010 Mar 5;140(5):652-65
pubmed: 20211135
Nucleic Acids Res. 2018 Jan 4;46(D1):D296-D302
pubmed: 29126174
Nature. 2012 Jun 28;486(7404):541-4
pubmed: 22722835
Nucleic Acids Res. 2016 Jul 27;44(13):6019-35
pubmed: 27317695
Science. 2014 Mar 21;343(6177):1360-3
pubmed: 24578530
Nucleic Acids Res. 2007;35(17):5944-53
pubmed: 17726050
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):E2110-6
pubmed: 22753494
RNA Biol. 2018;15(6):826-828
pubmed: 29537927
Front Endocrinol (Lausanne). 2018 Aug 03;9:402
pubmed: 30123182
PLoS One. 2011;6(7):e21800
pubmed: 21789182
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1404-9
pubmed: 23297232
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Cell. 2018 Mar 22;173(1):20-51
pubmed: 29570994
Genome Biol. 2004;5(10):R80
pubmed: 15461798
Bioinformatics. 2013 Jul 15;29(14):1830-1
pubmed: 23740750
Nat Struct Mol Biol. 2011 Sep 11;18(10):1139-46
pubmed: 21909094
Cell. 2018 Aug 9;174(4):1038-1038.e1
pubmed: 30096304
Nucleic Acids Res. 2011 Feb;39(3):825-36
pubmed: 20929877
Brief Bioinform. 2014 Jan;15(1):1-19
pubmed: 23175680
J Zhejiang Univ Sci B. 2014 May;15(5):466-73
pubmed: 24793764
Circ Res. 2012 Jun 8;110(12):1596-603
pubmed: 22518031
Elife. 2015 Aug 12;4:null
pubmed: 26267216
Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):311-30
pubmed: 22072587
Drug Dev Res. 2015 Nov;76(7):389-96
pubmed: 26286669
Front Mol Neurosci. 2013 Dec 03;6:45
pubmed: 24348326
Nat Rev Genet. 2007 Feb;8(2):93-103
pubmed: 17230196
Science. 2007 Dec 21;318(5858):1931-4
pubmed: 18048652
Nat Rev Genet. 2015 Feb;16(2):113-26
pubmed: 25488579
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8281-6
pubmed: 21536868
Mol Biol Evol. 2014 May;31(5):1237-47
pubmed: 24600049
Bioinformatics. 2010 Dec 15;26(24):3105-11
pubmed: 20956247
Nat Neurosci. 2012 Jun;15(6):827-35
pubmed: 22610069
Trends Cell Biol. 2015 Mar;25(3):137-47
pubmed: 25484347
Front Genet. 2017 May 16;8:59
pubmed: 28559915
Mol Cell. 2016 Nov 3;64(3):565-579
pubmed: 27871486
Nucleic Acids Res. 2015 Nov 16;43(20):9856-73
pubmed: 26446993

Auteurs

Arthur C Oliveira (AC)

Institute of Biosciences of Botucatu, Department of Genetics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. arthur.c.oliveira@unesp.br.

Luiz A Bovolenta (LA)

Department of Physics and Biophysics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. uiz.bovolenta@unesp.br.

Lucas Alves (L)

Institute of Biosciences of Botucatu, Department of Genetics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. lucas.ac.silva@unesp.br.

Lucas Figueiredo (L)

Institute of Biosciences of Botucatu, Department of Genetics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. dipietroneves@gmail.com.

Amanda O Ribeiro (AO)

Institute of Biosciences of Botucatu, Department of Genetics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. ao.ribeiro@unesp.br.

Vinicius F Campos (VF)

Laboratory of Structural Genomics (GenEstrut), Technology Developmental Center, Graduate Program of Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil. fariascampos@gmail.com.

Ney Lemke (N)

Department of Physics and Biophysics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. ney.lemke@unesp.br.

Danillo Pinhal (D)

Institute of Biosciences of Botucatu, Department of Genetics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil. danillo.pinhal@unesp.br.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH