Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes.
diversification
latitudinal diversity gradient
mechanistic model
palaeohabitat
reef fish
Journal
Proceedings. Biological sciences
ISSN: 1471-2954
Titre abrégé: Proc Biol Sci
Pays: England
ID NLM: 101245157
Informations de publication
Date de publication:
25 09 2019
25 09 2019
Historique:
entrez:
19
9
2019
pubmed:
19
9
2019
medline:
20
5
2020
Statut:
ppublish
Résumé
We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' hypotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are non-mutually exclusive and that their relative influence depends on the time scale considered. Simulations suggest that reef habitat dynamics produced the LDG during deep geological time, while ecological constraints shaped the modern LDG, with a strong influence of the reduction in the latitudinal extent of tropical reefs during the Neogene. Overall, this study illustrates how mechanistic models in ecology and evolution can provide a temporal and spatial understanding of the role of speciation, extinction and dispersal in generating biodiversity patterns.
Identifiants
pubmed: 31530148
doi: 10.1098/rspb.2019.1506
pmc: PMC6784715
doi:
Banques de données
Dryad
['10.5061/dryad.0r852nm']
figshare
['10.6084/m9.figshare.c.4655240']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20191506Références
Science. 2006 Oct 6;314(5796):102-6
pubmed: 17023653
Science. 1987 Jan 9;235(4785):167-71
pubmed: 17778629
Syst Biol. 2011 Jul;60(4):451-65
pubmed: 21551125
Trends Ecol Evol. 2019 Mar;34(3):211-223
pubmed: 30591209
Proc Biol Sci. 2010 Jul 22;277(1691):2131-8
pubmed: 20335205
Ecol Lett. 2009 Sep;12(9):873-86
pubmed: 19702748
Science. 2002 Aug 30;297(5586):1545-8
pubmed: 12202828
PLoS Biol. 2014 Jan 28;12(1):e1001775
pubmed: 24492316
BMC Evol Biol. 2014 Oct 21;14:220
pubmed: 25331733
Science. 2008 Mar 7;319(5868):1357-62
pubmed: 18323446
Am Nat. 2017 Jan;189(1):E1-E13
pubmed: 28035892
Science. 2018 Jul 20;361(6399):
pubmed: 30026200
Nature. 2010 Aug 26;466(7310):1098-101
pubmed: 20668450
Proc Biol Sci. 2018 Oct 10;285(1888):
pubmed: 30305433
Am Nat. 2004 Feb;163(2):192-211
pubmed: 14970922
Ecol Lett. 2007 Apr;10(4):315-31
pubmed: 17355570
Nat Commun. 2016 May 06;7:11461
pubmed: 27151103
Philos Trans R Soc Lond B Biol Sci. 2016 Apr 5;371(1691):20150221
pubmed: 26977062
Ecol Lett. 2015 Jun;18(6):563-71
pubmed: 25919478
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9130-5
pubmed: 16754845
J Biogeogr. 2014 Jan;41(1):8-22
pubmed: 25684838
Biol Rev Camb Philos Soc. 2017 Nov;92(4):2112-2130
pubmed: 28231621
Nature. 2018 Jul;559(7714):392-395
pubmed: 29973726
PLoS Biol. 2012;10(3):e1001292
pubmed: 22479151
Nature. 2017 May 31;546(7656):48-55
pubmed: 28569797
Philos Trans R Soc Lond B Biol Sci. 2016 Apr 5;371(1691):20150224
pubmed: 26977064
Sci Rep. 2017 Jul 6;7(1):4831
pubmed: 28684788
Trends Ecol Evol. 2014 Jan;29(1):42-50
pubmed: 24139126
Syst Biol. 2017 Mar 1;66(2):167-182
pubmed: 27590192
Am Nat. 2006 Dec;168(6):796-804
pubmed: 17109321
Ecol Lett. 2010 Oct;13(10):1310-24
pubmed: 20649638
Science. 2008 Aug 1;321(5889):654-7
pubmed: 18669854
Proc Biol Sci. 2019 Sep 25;286(1911):20191506
pubmed: 31530148