Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning.


Journal

International journal of radiation oncology, biology, physics
ISSN: 1879-355X
Titre abrégé: Int J Radiat Oncol Biol Phys
Pays: United States
ID NLM: 7603616

Informations de publication

Date de publication:
01 12 2019
Historique:
received: 14 02 2019
revised: 16 08 2019
accepted: 22 08 2019
pubmed: 11 9 2019
medline: 6 2 2020
entrez: 11 9 2019
Statut: ppublish

Résumé

Deep learning methods (DLMs) have recently been proposed to generate pseudo-CT (pCT) for magnetic resonance imaging (MRI) based dose planning. This study aims to evaluate and compare DLMs (U-Net and generative adversarial network [GAN]) using various loss functions (L2, single-scale perceptual loss [PL], multiscale PL, weighted multiscale PL) and a patch-based method (PBM). Thirty-nine patients received a volumetric modulated arc therapy for prostate cancer (78 Gy). T Considering the image uncertainties in the whole pelvis, GAN L2 and U-Net L2 showed the lowest mean absolute error (≤34.4 Hounsfield units). The mean errors were not different than 0 (P ≤ .05). The PBM provided the highest uncertainties. Very few DVH points differed when comparing GAN L2 or U-Net L2 DVHs and CT Generating pCT for MRI dose planning with DLMs and PBM provided low-dose uncertainties. In particular, the GAN L2 and U-Net L2 provided the lowest dose uncertainties together with a low computation time.

Identifiants

pubmed: 31505245
pii: S0360-3016(19)33735-6
doi: 10.1016/j.ijrobp.2019.08.049
pii:
doi:

Types de publication

Comparative Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1137-1150

Informations de copyright

Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.

Auteurs

Axel Largent (A)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France. Electronic address: axel.largent@hotmail.fr.

Anaïs Barateau (A)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Jean-Claude Nunes (JC)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Eugenia Mylona (E)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Joël Castelli (J)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Caroline Lafond (C)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Peter B Greer (PB)

School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, Australia; Department of Radiation Oncology, Calvary Mater, Newcastle, Australia.

Jason A Dowling (JA)

CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia.

John Baxter (J)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Hervé Saint-Jalmes (H)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Oscar Acosta (O)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Renaud de Crevoisier (R)

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH