Role of flagellar hydrogen bonding in Salmonella motility and flagellar polymorphic transition.


Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
11 2019
Historique:
accepted: 21 08 2019
pubmed: 25 8 2019
medline: 31 3 2020
entrez: 25 8 2019
Statut: ppublish

Résumé

Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L-type or R-type, having slightly different conformations and inter-protofilaments interactions. By mixing different ratios of L-type and R-type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site-directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non-motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right-handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine's model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.

Identifiants

pubmed: 31444817
doi: 10.1111/mmi.14377
doi:

Substances chimiques

Flagellin 12777-81-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1519-1530

Informations de copyright

© 2019 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

Références

Alon, U., Camarena, L., Surette, M.G.y Arcas, B.A., Liu, Y., Leibler, S. and Stock, J.B. (1998) Response regulator output in bacterial chemotaxis. EMBO Journal, 17(15), 4238-4248.
Altegoer, F., Mukherjee, S., Steinchen, W., Bedrunka, P., Linne, U., Kearns, D.B. and Bange, G. (2018) FliS/flagellin/FliW heterotrimer couples type III secretion and flagellin homeostasis. Scientific Reports, 8(1), 11552.
Asakura, S. and Iino, T. (1972) Polymorphism of Salmonella flagella as investigated by means of in vitro copolymerization of flagellins derived from various strains. Journal of Molecular Biology, 64(1), 251-268.
Attmannspacher, U., Scharf, B.E. and Harshey, R.M. (2008) FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Molecular Microbiology, 68(2), 328-341.
Berg, H.C. and Brown, D.A. (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 239(5374), 500-504.
Berg, J.M., Tymoczko, J.L. and Stryer, L. (2002) Biochemistry. 5th edition. Section 34.4, A Rotary Motor Drives Bacterial Motion. New York: W H Freeman.
Bonifield, H.R. and Hughes, K.T. (2003) Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. Journal of Bacteriology, 185(12), 3567-3574.
Calladine, C.R. (1978) Change of waveform in bacterial flagella - role of mechanics at molecular level. Journal of Molecular Biology, 118(4), 457-479.
Calladine, C.R., Luisi, B.F. and Pratap, J.V. (2013) A “mechanistic” explanation of the multiple helical forms adopted by bacterial flagellar filaments. Journal of Molecular Biology, 425(5), 914-928.
Chenouard, N., Bloch, I. and Olivo-Marin, J.C. (2013) Multiple hypothesis tracking for cluttered biological image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2736-3750.
Darnton, N.C. and Berg, H.C. (2007) Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophysical Journal, 92(6), 2230-2236.
DeRosier, D.J. (1998) The turn of the screw: the bacterial flagellar motor. Cell, 93(1), 17-20.
Eisenbach, M., Wolf, A., Welch, M., Caplan, S.R., Lapidus, I.R., Macnab, R.M., et al. (1990) Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. Journal of Molecular Biology, 211(3), 551-563.
Friedrich, B. (2006) A mesoscopic model for helical bacterial flagella. Journal of Mathematical Biology, 53(1), 162-178.
Hayashi, F., Tomaru, H., Furukawa, E., Ikeda, K., Fukano, H. and Oosawa, K. (2013) Key amino acid residues involved in the transitions of L- to R-type protofilaments of the Salmonella flagellar filament. Journal of Bacteriology, 195(16), 3503-3513.
Kamiya, R. and Asakura, S. (1976) Helical transformations of Salmonella flagella in vitro. Journal of Molecular Biology, 106(1), 167-186.
Kamiya, R., Asakura, S., Wakabayashi, K. and Namba, K. (1979) Transition of bacterial flagella from helical to straight forms with different subunit arrangements. Journal of Molecular Biology, 131(4), 725-742.
Kanto, S., Okino, H., Aizawa, S. and Yamaguchi, S. (1991) Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. Journal of Molecular Biology, 219(3), 471-480.
Kitao, A., Yonekura, K., Maki-Yonekura, S., Samatey, F.A., Imada, K., Namba, K. and Go, N. (2006) Switch interactions control energy frustration and multiple flagellar filament structures. Proceedings of the National Academy of Sciences, 103(13), 4894-4899.
Kojadinovic, M., Sirinelli, A., Wadhams, G.H. and Armitage, J.P. (2011) New motion analysis system for characterization of the chemosensory response kinetics of Rhodobacter sphaeroides under different growth conditions. Applied and Environment Microbiology, 77(12), 4082-4088.
Krissinel, E. and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774-797.
Kuhn, M.J., Schmidt, F.K., Farthing, N.E., Rossmann, F.M., Helm, B., Wilson, L.G., et al. (2018) Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nature Communications, 9(1), 5369.
Macnab, R.M. and Ornston, M.K. (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. Journal of Molecular Biology, 112(1), 1-30.
Maki-Yonekura, S., Yonekura, K. and Namba, K. (2010) Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nature Structural & Molecular Biology, 17(4), 417-422.
Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. and Namba, K. (1996) Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proceedings of the National Academy of Sciences, 93(26), 15108-15113.
O'Brien, E.J. and Bennett, P.M. (1972) Structure of straight flagella from a mutant Salmonella. Journal of Molecular Biology, 70(1), 133-152.
Samatey, F.A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M. and Namba, K. (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature, 410(6826), 331-337.
Scharf, B. (2002) Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. Journal of Bacteriology, 184(21), 5979-5986.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682.
Shimada, K., Kamiya, R. and Asakura, S. (1975) Left-handed to right-handed helix conversion in Salmonella flagella. Nature, 254(5498), 332-334.
Silverman, M. and Simon, M. (1974) Flagellar rotation and the mechanism of bacterial motility. Nature, 249(452), 73-74.
Song, W.S. and Yoon, S.I. (2014) Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament. Biochemical and Biophysical Research Communications, 444(2), 109-115.
Subach, O.M., Gundorov, I.S., Yoshimura, M., Subach, F.V., Zhang, J., Gruenwald, D., et al. (2008) Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology, 15(10), 1116-1124.
Tarantino, N., Tinevez, J.Y., Crowell, E.F., Boisson, B., Henriques, R., Mhlanga, M., et al. (2014) TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. Journal of Cell Biology, 204(2), 231-245.
Turner, L., Ryu, W.S. and Berg, H.C. (2000) Real-time imaging of fluorescent flagellar filaments. Journal of Bacteriology, 182(10), 2793-2801.
Wang, W., Jiang, Z., Westermann, M. and Ping, L. (2012) Three mutations in Escherichia coli that generate transformable functional flagella. Journal of Bacteriology, 194(21), 5856-5863.
Wang, F., Burrage, A.M., Postel, S., Clark, R.E., Orlova, A., Sundberg, E.J., et al. (2017) A structural model of flagellar filament switching across multiple bacterial species. Nature Communications, 8(1), 960.
Wilson, D.R. and Beveridge, T.J. (1993) Bacterial flagellar filaments and their component flagellins. Canadian Journal of Microbiology, 39(5), 451-472.
Yamashita, I., Hasegawa, K., Suzuki, H., Vonderviszt, F., Mimori-Kiyosue, Y. and Namba, K. (1998) Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Natural Structural Biology, 5(2), 125-132.
Yonekura, K., Maki-Yonekura, S. and Namba, K. (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424(6949), 643-650.
Zieg, J., Silverman, M., Hilmen, M. and Simon, M. (1977) Recombinational switch for gene expression. Science, 196(4286), 170-172.

Auteurs

Chu Wang (C)

Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Notkestrasse 85, Hamburg, 22607, Germany.
Structural Systems Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany.

Michele Lunelli (M)

Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Notkestrasse 85, Hamburg, 22607, Germany.
Structural Systems Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany.

Erik Zschieschang (E)

Structural Systems Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany.

Jens Bernhard Bosse (JB)

Department of Structural Cell Biology of Viruses, Subunit Quantitative Virology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.

Roland Thuenauer (R)

Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology (CSSB), University of Hamburg, Notkestrasse 85, Hamburg, 22607, Germany.

Michael Kolbe (M)

Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Notkestrasse 85, Hamburg, 22607, Germany.
Structural Systems Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany.
MIN-Faculty University Hamburg, Hamburg, Germany.

Articles similaires

Animals Macrophages Mice Cation Transport Proteins Salmonella typhimurium

Scalable ultrastrong MXene films with superior osteogenesis.

Sijie Wan, Ying Chen, Chaojie Huang et al.
1.00
Osteogenesis Animals Tensile Strength Titanium Mice
Flagella Bacterial Proteins Chemotaxis Spores, Bacterial
Mycobacterium tuberculosis Macrophages Animals Mice Autophagy

Classifications MeSH