Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guideline-standardized in vitro test.


Journal

Letters in applied microbiology
ISSN: 1472-765X
Titre abrégé: Lett Appl Microbiol
Pays: England
ID NLM: 8510094

Informations de publication

Date de publication:
Oct 2019
Historique:
received: 11 06 2019
revised: 15 08 2019
accepted: 15 08 2019
pubmed: 23 8 2019
medline: 20 11 2019
entrez: 23 8 2019
Statut: ppublish

Résumé

Five tungsten carbide nanoparticle preparations (denoted WC1-WC5) were investigated for broad spectrum virucidal activity against four recommended model viruses. These are modified vaccinia virus Ankara (MVA), human adenovirus type 5 (HAdV-5), poliovirus type 1 (PV-1) and murine norovirus (MNV). All virucidal tests were performed two to five times using the quantitative suspension test, which is a highly standardized test method to evaluate the virucidal efficacy of disinfectants in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Quantitative detection of viruses was conducted by endpoint titration and quantitative real-time PCR. Results showed that three of the five tested compounds (WC1-WC3) were able to reduce the infectivity of all model viruses by at least four log

Identifiants

pubmed: 31436888
doi: 10.1111/lam.13208
doi:

Substances chimiques

Disinfectants 0
Tungsten Compounds 0
tungsten carbide 11130-73-7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

302-309

Informations de copyright

© 2019 The Society for Applied Microbiology.

Références

Borrego, B., Lorenzo, G., Mota-Morales, J.D., Almanza-Reyes, H., Mateos, F., Lopez-Gil, E., de la Losa, N., Burmistrov, V.A. et al. (2016) Potential application of silver nanoparticles to control the infectivity of rift valley fever virus in vitro and in vivo. Nanomedicine 12, 1185-1192.
Broglie, J.J., Alston, B., Yang, C., Ma, L., Adcock, A.F., Chen, W. and Yang, L. (2015) Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS ONE 10, e0141050.
Carillo, G., Keck, D. and Martinez-Duarte, R. (2019) Mechanical properties and process improvement of tungsten carbide additively manufactured with renewable biopolymers. Procedia Manuf 34, 704-711.
CEN European Committee for Standardization/Technical Committee 216 EN 14476CEN European Committee for Standardization/Technical Committee 216 EN 14476. (2013). Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of virucidal activity in the medical area - Test method and requirements (Phase 2/Step 1).
CEN European Committee for Standardization/Technical Committee 216 EN 14885CEN European Committee for Standardization/Technical Committee 216 EN 14885. (2015) Chemical disinfectants and antiseptics - Application of European Standards for chemical disinfectants and antiseptics.
Dang, J., Wu, Y., Lv, Z. and Lv, X. (2018) Preparation of tungsten carbides by reducing and carbonizing WO2 with CO. J Alloys Comp 745, 421-429.
Dare, R.K. and Talbot, T.R. (2016) Health care-acquired viral respiratory diseases. Infect Dis Clin North Am 30, 1053-1070.
Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S. et al. (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8, 4303-4314.
Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V. and Galdiero, M. (2011) Silver nanoparticles as potential antiviral agents. Molecules 16, 8894-8918.
Haggstrom, J., Balyozova, D., Klabunde, K.J. and Marchin, G. (2010) Virucidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale 2, 529-534.
Hubbs, A.F., Mercer, R.R., Benkovic, S.A., Harkema, J., Sriram, K., Schwegler-Berry, D., Goravanahally, M.P., Nurkiewicz, T.R. et al. (2011) Nanotoxicology-a pathologist's perspective. Toxicol Pathol 39, 301-324.
Kaaden, O.-R. and Mahnel, H. (1993) In Allgemeine Virologie. Messung der Infektiosität. In Medizinische Mikrobiologie, Infektions- und Seuchenlehre für Tierärzte, Biologen, Agrarwissenschaftler und Interessierte aus benachbarten Fachgebieten, 6th ed, ed. Rolle, M. and Mayr, A. pp. 207-210. Stuttgart: Ferdinand Enke Verlag.
Koper, O.B., Klabunde, J.S., Marchin, G.L., Klabunde, K.J., Stoimenov, P. and Bohra, L. (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44, 49-55.
Lambert, R.J., Johnston, M.D., Hanlon, G.W. and Denyer, S.P. (2003) Theory of antimicrobial combinations: biocide mixtures - synergy or addition? J Appl Microbiol 94, 747-759.
Lara, H.H., Ayala-Nunez, N.V., Ixtepan-Turrent, L. and Rodriguez-Padilla, C. (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 8, 1.
Lara, H.H., Garza-Trevino, E.N., Ixtepan-Turrent, L. and Singh, D.K. (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 9, 30.
Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K. and Che, C.M. (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13, 253-262.
Möller, L., Schünadel, L., Nitsche, A., Schwebke, I., Hanisch, M. and Laue, M. (2015) Evaluation of virus inactivation by formaldehyde to enhance biosafety of diagnostic electron microscopy. Viruses 7, 666-679.
Osminkina, L.A., Timoshenko, V.Y., Shilovsky, I.P., Kornilaeva, G.V., Shevchenko, S.N., Gongalsky, M.B., Tamarov, K.P. et al. (2014) Porous silicon nanoparticles as scavengers of hazardous viruses. J Nanopart Res 16, 2430.
Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Böttcher, C., Schlecht, S., Herrmann, A. and Haag, R. (2010) Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6, 2900-2006.
Rabenau, H.F., Schwebke, I., Blümel, J., Eggers, M., Glebe, D., Rapp, I., Sauerbrei, A., Steinmann, E. et al. (2015) Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) e.V. und des Robert Koch-Instituts (RKI) zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin (Fassung vom 1. Dezember 2014) [Guideline of the German Association for the Control of Viral Diseases (DVV) eV and the Robert Koch Institute (RKI) for testing chemical disinfectants for effectiveness against viruses in human medicine. Version of 1 December, 2014]. Bundesgesundheitsbl 58, 493-504.
Rafiei, S., Rezatofighi, S.E., Ardakani, M.R. and Rastegarzadeh, S. (2016) Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans Nanobioscience 15, 34-40.
RKI. (2017) Robert Koch-Institut: Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016, Berlin.
Sabzi, M., Anijdan, S.H.M., Ghobeiti-Hasab, M. and Fatemi-Mehr, M. (2018a) Sintering variables optimization, microstructural evolution and physical properties enhancement on nano-WC ceramics. J Alloys Compounds 766, 672-677.
Sabzi, M., Dezfuli, S.M. and Far, S.M. (2018b) Deposition of Ni-tungsten carbide nanocomposite coating by TIG welding: characterization and control of microstructure and wear/corrosion. Ceram Int 44, 22816-22829.
Saptarshi, S.R., Duschl, A. and Lopata, A.L. (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11, 26.
Schwebke, I. and Rabenau, H.F. (2012) Aktueller Stand zur Viruzidieprüfung - ein Überblick. Hyg Med 37, 178-182.
Shan, D., Ma, C. and Yang, J. (2019) Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2019.06.004. in press.
Xiang, D., Zheng, Y., Duan, W., Li, X., Yin, J., Shigdar, S., O'Connor, M.L., Marappa, M. et al. (2013) Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine 8, 4103-4113.
Yang, X.X., Li, C.M. and Huang, C.Z. (2016) Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 8, 3040-3048.

Auteurs

F Pfaff (F)

Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

B Glück (B)

Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

T Hoyer (T)

Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany.

D Rohländer (D)

Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany.

A Sauerbrei (A)

Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

R Zell (R)

Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH