Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry.
Aged
Asia
Computed Tomography Angiography
Coronary Angiography
Coronary Artery Disease
/ diagnostic imaging
Diagnosis, Computer-Assisted
Europe
Female
Fractional Flow Reserve, Myocardial
Humans
Machine Learning
Male
Middle Aged
North America
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Registries
Reproducibility of Results
Severity of Illness Index
Vascular Calcification
/ diagnostic imaging
computational fractional flow reserve
coronary artery disease
coronary computed tomography angiography
invasive coronary angiography
Journal
JACC. Cardiovascular imaging
ISSN: 1876-7591
Titre abrégé: JACC Cardiovasc Imaging
Pays: United States
ID NLM: 101467978
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
04
12
2018
revised:
10
06
2019
accepted:
19
06
2019
pubmed:
20
8
2019
medline:
11
11
2020
entrez:
19
8
2019
Statut:
ppublish
Résumé
This study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR). CT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated. A total of 482 vessels from 314 patients (age 62.3 ± 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and ≥400) on a per-vessel level with invasive FFR as the reference standard. The diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC ≥400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC ≥ 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001). Machine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621).
Sections du résumé
OBJECTIVES
This study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR).
BACKGROUND
CT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated.
METHODS
A total of 482 vessels from 314 patients (age 62.3 ± 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and ≥400) on a per-vessel level with invasive FFR as the reference standard.
RESULTS
The diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC ≥400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC ≥ 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001).
CONCLUSIONS
Machine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621).
Identifiants
pubmed: 31422141
pii: S1936-878X(19)30635-7
doi: 10.1016/j.jcmg.2019.06.027
pii:
doi:
Banques de données
ClinicalTrials.gov
['NCT02805621']
Types de publication
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
760-770Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.