Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 08 2019
08 08 2019
Historique:
received:
01
10
2018
accepted:
15
07
2019
entrez:
10
8
2019
pubmed:
10
8
2019
medline:
8
1
2020
Statut:
epublish
Résumé
Iron and light are recognized as limiting factors controlling Southern Ocean phytoplankton growth. Recent field-based evidence suggests, however, that manganese availability may also play a role. Here we examine the influence of iron and manganese on protein expression and physiology in Phaeocystis antarctica, a key Antarctic primary producer. We provide taxon-specific proteomic evidence to show that in-situ Southern Ocean Phaeocystis populations regularly experience stress due to combined low manganese and iron availability. In culture, combined low iron and manganese induce large-scale changes in the Phaeocystis proteome and result in reorganization of the photosynthetic apparatus. Natural Phaeocystis populations produce protein signatures indicating late-season manganese and iron stress, consistent with concurrently observed stimulation of chlorophyll production upon additions of manganese or iron. These results implicate manganese as an important driver of Southern Ocean productivity and demonstrate the utility of peptide mass spectrometry for identifying drivers of incomplete macronutrient consumption.
Identifiants
pubmed: 31395884
doi: 10.1038/s41467-019-11426-z
pii: 10.1038/s41467-019-11426-z
pmc: PMC6687791
doi:
Substances chimiques
Manganese
42Z2K6ZL8P
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3582Références
Science. 1999 Jan 15;283(5400):365-7
pubmed: 9888847
Mol Cell Proteomics. 2013 Jan;12(1):65-86
pubmed: 23065468
PLoS Biol. 2007 Mar;5(3):e77
pubmed: 17355176
J Phycol. 2012 Feb;48(1):45-59
pubmed: 27009649
J Mol Biol. 2015 Apr 10;427(7):1549-63
pubmed: 25698115
J Biol Chem. 1999 Feb 12;274(7):4180-8
pubmed: 9933614
Appl Environ Microbiol. 2018 Jul 17;84(15):
pubmed: 29802183
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43
pubmed: 26221022
Bioinformatics. 2010 Apr 1;26(7):966-8
pubmed: 20147306
Mol Cell Proteomics. 2017 May;16(5):873-890
pubmed: 28325852
FEBS Lett. 2012 Aug 31;586(18):2917-24
pubmed: 22819831
PLoS One. 2017 Jul 10;12(7):e0179751
pubmed: 28692685
J Am Soc Mass Spectrom. 2016 Nov;27(11):1719-1727
pubmed: 27572102
Plant Physiol. 2011 Jan;155(1):571-9
pubmed: 21088228
Front Plant Sci. 2016 Aug 18;7:1223
pubmed: 27588022
Nucleic Acids Res. 2012 May;40(10):4288-97
pubmed: 22287627
Science. 2014 Sep 5;345(6201):1173-7
pubmed: 25190794
Ann Rev Mar Sci. 2013;5:217-46
pubmed: 22881354
Genome Biol. 2010;11(3):R25
pubmed: 20196867
PLoS Biol. 2014 Jun 24;12(6):e1001889
pubmed: 24959919
J Basic Microbiol. 2015 Jun;55(6):729-40
pubmed: 25572501
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Biochim Biophys Acta. 2014 Dec;1837(12):1990-1997
pubmed: 25261790
Front Microbiol. 2011 Nov 25;2:234
pubmed: 22275908
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8414-8419
pubmed: 28724723
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1762-71
pubmed: 22652568
Environ Microbiol. 2015 Jun;17(6):2090-8
pubmed: 25728137