Tuning the Solubility of Self-Assembled Fluorescent Aromatic Cages Using Functionalized Amino Acid Building Blocks.
disulfides
dynamic covalent chemistry
fluorescence
molecular cages
self-assembly
Journal
Frontiers in chemistry
ISSN: 2296-2646
Titre abrégé: Front Chem
Pays: Switzerland
ID NLM: 101627988
Informations de publication
Date de publication:
2019
2019
Historique:
received:
11
04
2019
accepted:
01
07
2019
entrez:
6
8
2019
pubmed:
6
8
2019
medline:
6
8
2019
Statut:
epublish
Résumé
We previously reported novel fluorescent aromatic cages that are self-produced using a set of orthogonal dynamic covalent reactions, operating simultaneously in one-pot, to assemble up to 10 components through 12 reactions into a single cage-type structure. We now introduce N-functionalized amino acids as new building blocks that enable tuning the solubility and analysis of the resulting cages. A convenient divergent synthetic approach was developed to tether different side chains on the N-terminal of a cysteine-derived building block. Our studies show that this chemical functionalization does not prevent the subsequent self-assembly and effective formation of desired cages. While the originally described cages required 94% DMSO, the new ones bearing hydrophobic side chains were found soluble in organic solvents (up to 75% CHCl
Identifiants
pubmed: 31380348
doi: 10.3389/fchem.2019.00503
pmc: PMC6647868
doi:
Types de publication
Journal Article
Langues
eng
Pagination
503Références
Chemistry. 2007;13(34):9542-6
pubmed: 17879250
Acc Chem Res. 2018 Oct 16;51(10):2411-2422
pubmed: 30203648
Angew Chem Int Ed Engl. 2015 Mar 9;54(11):3276-89
pubmed: 25582911
Chemistry. 2018 Jun 21;24(35):8769-8773
pubmed: 29676821
Chem Soc Rev. 2012 Mar 21;41(6):2003-24
pubmed: 22310886
Chem Rev. 2015 Nov 11;115(21):11718-940
pubmed: 26492387
Chem Sci. 2019 Mar 20;10(16):4412-4421
pubmed: 31057768
Nat Commun. 2017 May 10;8:15109
pubmed: 28488697
Chem Rev. 2014 Sep 10;114(17):8542-78
pubmed: 25026396
Chem Sci. 2018 Dec 12;10(6):1836-1843
pubmed: 30842852
Chem Soc Rev. 2018 Oct 1;47(19):7452-7476
pubmed: 30177975
Acc Chem Res. 2019 Feb 19;52(2):510-519
pubmed: 30676745
Angew Chem Int Ed Engl. 2018 Apr 23;57(18):4850-4878
pubmed: 29205727
Chemistry. 2019 Feb 26;25(12):3091-3097
pubmed: 30548937
Chemistry. 2019 Jan 24;25(5):1118-1127
pubmed: 30230614
Chem Sci. 2019 Feb 6;10(12):3523-3528
pubmed: 30996943
Angew Chem Int Ed Engl. 2019 Feb 4;58(6):1768-1773
pubmed: 30557460
Chem Soc Rev. 2014 Mar 21;43(6):1861-72
pubmed: 24132207
Acc Chem Res. 2012 Dec 18;45(12):2200-10
pubmed: 22264201
Chemistry. 2018 Feb 1;24(7):1518-1521
pubmed: 29266449
ACS Macro Lett. 2016 May 17;5(5):583-587
pubmed: 35632375
Angew Chem Int Ed Engl. 2019 Jan 2;58(1):74-85
pubmed: 30098086
Chemistry. 2018 Jul 25;24(42):10802-10811
pubmed: 29741793
Mini Rev Med Chem. 2007 Jun;7(6):627-48
pubmed: 17584161
Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8640-8653
pubmed: 30725512
Chemistry. 2009 Mar 2;15(11):2500-3
pubmed: 19189356
Chemistry. 2018 Dec 5;24(68):17856-17868
pubmed: 29989667
Chem Soc Rev. 2015 Jun 7;44(11):3786-807
pubmed: 25940832
Chem Mater. 2017 Jan 10;29(1):149-157
pubmed: 28111496
Chem Commun (Camb). 2013 Jul 4;49(52):5820-2
pubmed: 23525236
Chemistry. 2017 Dec 19;23(71):18010-18018
pubmed: 28960590