A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 07 2019
31 07 2019
Historique:
received:
21
09
2018
accepted:
11
07
2019
entrez:
2
8
2019
pubmed:
2
8
2019
medline:
21
10
2020
Statut:
epublish
Résumé
Hypertension is a leading mortality cause of 410,000 patients in USA. Cerebrovascular structural changes that occur as a result of chronically elevated cerebral perfusion pressure are hypothesized to precede the onset of systemic hypertension. A novel framework is presented in this manuscript to detect and quantify cerebrovascular changes (i.e. blood vessel diameters and tortuosity changes) using magnetic resonance angiography (MRA) data. The proposed framework consists of: 1) A novel adaptive segmentation algorithm to delineate large as well as small blood vessels locally using 3-D spatial information and appearance features of the cerebrovascular system; 2) Estimating the cumulative distribution function (CDF) of the 3-D distance map of the cerebrovascular system to quantify alterations in cerebral blood vessels' diameters; 3) Calculation of mean and Gaussian curvatures to quantify cerebrovascular tortuosity; and 4) Statistical and correlation analyses to identify the relationship between mean arterial pressure (MAP) and cerebral blood vessels' diameters and tortuosity alterations. The proposed framework was validated using MAP and MRA data collected from 15 patients over a 700-days period. The novel adaptive segmentation algorithm recorded a 92.23% Dice similarity coefficient (DSC), a 94.82% sensitivity, a 99.00% specificity, and a 10.00% absolute vessels volume difference (AVVD) in delineating cerebral blood vessels from surrounding tissues compared to the ground truth. Experiments demonstrated that MAP is inversely related to cerebral blood vessel diameters (p-value < 0.05) globally (over the whole brain) and locally (at circle of Willis and below). A statistically significant direct correlation (p-value < 0.05) was found between MAP and tortuosity (medians of Gaussian and mean curvatures, and average of mean curvature) globally and locally (at circle of Willis and below). Quantification of the cerebrovascular diameter and tortuosity changes may enable clinicians to predict elevated blood pressure before its onset and optimize medical treatment plans of pre-hypertension and hypertension.
Identifiants
pubmed: 31366941
doi: 10.1038/s41598-019-47368-1
pii: 10.1038/s41598-019-47368-1
pmc: PMC6668478
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11105Références
Hypertension. 2000 Sep;36(3):312-8
pubmed: 10988257
Ophthalmology. 2007 Dec;114(12):e59-67
pubmed: 18054630
Arch Dis Child. 1998 Jan;78(1):89-94
pubmed: 9534686
J Vasc Surg. 2001 Oct;34(4):594-9
pubmed: 11668310
PLoS One. 2015 Mar 26;10(3):e0122138
pubmed: 25812012
Cathet Cardiovasc Diagn. 1996 May;38(1):25-31
pubmed: 8722854
IEEE Trans Biomed Eng. 2010 Sep;57(9):2239-47
pubmed: 20515707
Med Image Anal. 2016 Aug;32:216-32
pubmed: 27136674
J Mech Behav Biomed Mater. 2018 Jan;77:475-484
pubmed: 29032314
J Vasc Res. 2012;49(3):185-97
pubmed: 22433458
Proc AMIA Annu Fall Symp. 1997;:459-63
pubmed: 9357668
J Am Heart Assoc. 2018 May 30;7(11):
pubmed: 29848493
Cerebrovasc Dis. 2002;13(4):242-50
pubmed: 12011548
J Neurol. 2017 May;264(5):938-945
pubmed: 28389742
J Vasc Res. 1993 Jul-Aug;30(4):181-91
pubmed: 8357949
Hypertension. 2009 Nov;54(5):1050-6
pubmed: 19805635
Front Neurosci. 2020 Dec 08;14:592352
pubmed: 33363452
Cell Metab. 2008 Jun;7(6):476-84
pubmed: 18522829
J Stroke Cerebrovasc Dis. 2014 May-Jun;23(5):861-8
pubmed: 23954598
Pulm Circ. 2013 Apr;3(2):363-8
pubmed: 24015337
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
pubmed: 20378467
IEEE Trans Biomed Eng. 2012 Jul;59(7):2019-29
pubmed: 22547453
IEEE Trans Image Process. 1993;2(3):296-310
pubmed: 18296219
J Neurosurg. 2008 Dec;109(6):1141-7
pubmed: 19035734
AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1899-903
pubmed: 21885718
Comput Methods Programs Biomed. 2018 May;158:71-91
pubmed: 29544791