Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
Kelvin-Voigt model
Shear Wave Elastography
Torsional Wave Elastography
cervical biomechanics
tissue-mimicking phantom
viscoelasticity
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
25 Jul 2019
25 Jul 2019
Historique:
received:
03
05
2019
revised:
16
07
2019
accepted:
22
07
2019
entrez:
28
7
2019
pubmed:
28
7
2019
medline:
14
1
2020
Statut:
epublish
Résumé
The reconstruction of viscous properties of soft tissues, and more specifically, of cervical tissue is a challenging problem. In this paper, a new method is proposed to reconstruct the viscoelastic parameters of cervical tissue-mimicking phantoms by a Torsional Wave Elastography (TWE) technique. The reconstruction method, based on a Probabilistic Inverse Problem (PIP) approach, is presented and experimentally validated against Shear Wave Elastography (SWE). The anatomy of the cervical tissue has been mimicked by means of a two-layer gelatine phantom that simulates the epithelial and connective layers. Five ad hoc oil-in-gelatine phantoms were fabricated at different proportion to test the new reconstruction technique. The PIP approach was used for reconstructing the Kelvin-Voigt (KV) viscoelastic parameters by comparing the measurements obtained from the TWE technique with the synthetic signals from a Finite Difference Time Domain (FDTD) KV wave propagation model. Additionally, SWE tests were realized in order to characterize the viscoelastic properties of each batch of gelatine. Finally, validation was carried out by comparing the KV parameters inferred from the PIP with those reconstructed from the shear wave dispersion curve obtained from the SWE measurements. In order to test the degree of agreement between both techniques, a Student's T-test and a Pearson's correlation study were performed. The results indicate that the proposed method is able to reconstruct the KV viscoelastic properties of the cervical tissue, for both the epithelial and connective layers, as well as the thickness of the first layer with acceptable accuracy.
Identifiants
pubmed: 31349721
pii: s19153281
doi: 10.3390/s19153281
pmc: PMC6696340
pii:
doi:
Substances chimiques
Gelatin
9000-70-8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Spanish Ministry of Education
ID : DPI2017-83859-R
Références
Am J Obstet Gynecol. 2000 Oct;183(4):967-73
pubmed: 11035348
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409
pubmed: 15139541
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):551-65
pubmed: 15217233
J Acoust Soc Am. 2004 Dec;116(6):3734-41
pubmed: 15658723
Med Image Anal. 2005 Oct;9(5):481-90
pubmed: 16006169
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jul;53(7):1300-13
pubmed: 16889337
Ultrason Imaging. 2006 Oct;28(4):193-210
pubmed: 17521042
IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(2):45-53
pubmed: 18285015
Ultrason Imaging. 1991 Apr;13(2):111-34
pubmed: 1858217
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):55-62
pubmed: 19213632
IEEE Trans Med Imaging. 2009 Dec;28(12):1881-93
pubmed: 19423431
J Acoust Soc Am. 2010 Jan;127(1):542-59
pubmed: 20058999
Trends Endocrinol Metab. 2010 Jun;21(6):353-61
pubmed: 20172738
IEEE Trans Biomed Eng. 2011 Feb;58(2):235-42
pubmed: 20595086
Biol Reprod. 2011 May;84(5):1053-62
pubmed: 21248285
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):389-98
pubmed: 21342824
Biol Reprod. 2011 Jul;85(1):97-104
pubmed: 21471299
Am J Obstet Gynecol. 2012 Nov;207(5):345-54
pubmed: 22717270
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Nov;59(11):2390-410
pubmed: 23192803
BMJ. 2012 Dec 04;345:e7961
pubmed: 23212880
Ultrasound Med Biol. 2013 Feb;39(2):300-11
pubmed: 23245823
Ultrasound Obstet Gynecol. 2013 Feb;41(2):121-8
pubmed: 23371343
Diagn Interv Imaging. 2013 May;94(5):487-95
pubmed: 23619292
Appl Phys Lett. 2012 Mar 26;100(13):1337021-1337025
pubmed: 23687384
Ultrasound Obstet Gynecol. 2014 Apr;43(4):452-8
pubmed: 23836486
Reprod Health. 2013;10 Suppl 1:S2
pubmed: 24625129
Ultrasonics. 2014 Sep;54(7):1950-62
pubmed: 24882020
J Perinat Med. 2014 Sep;42(5):549-57
pubmed: 25029081
Am J Obstet Gynecol. 2015 Mar;212(3):321.e1-8
pubmed: 25281365
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1651-60
pubmed: 25392863
J Biomech. 2015 Jun 25;48(9):1549-56
pubmed: 25700611
J Biomech. 2015 Jun 25;48(9):1511-23
pubmed: 25841293
Ultraschall Med. 2017 Aug;38(4):395-402
pubmed: 26251994
Ultrasound Med Biol. 2015 Nov;41(11):2789-97
pubmed: 26278635
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):164-176
pubmed: 28092508
Theranostics. 2017 Mar 7;7(5):1303-1329
pubmed: 28435467
Sensors (Basel). 2017 Jun 15;17(6):
pubmed: 28617353
Sensors (Basel). 2017 Sep 11;17(9):
pubmed: 28891995
Ultrasound Med Biol. 2018 Mar;44(3):515-521
pubmed: 29246767
Sensors (Basel). 2018 Sep 07;18(9):null
pubmed: 30205422
Ultrasound Med Biol. 2019 Feb;45(2):586-604
pubmed: 30473175
Biochem Med. 1979 Jun;21(3):262-70
pubmed: 496919