Global spatial risk assessment of sharks under the footprint of fisheries.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
04
10
2018
accepted:
10
07
2019
pubmed:
25
7
2019
medline:
27
3
2020
entrez:
25
7
2019
Statut:
ppublish
Résumé
Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.
Identifiants
pubmed: 31340216
doi: 10.1038/s41586-019-1444-4
pii: 10.1038/s41586-019-1444-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
461-466Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Références
Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).
doi: 10.1016/j.tree.2016.02.015
Lewison, R. L. et al. Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. Proc. Natl Acad. Sci. USA 111, 5271–5276 (2014).
doi: 10.1073/pnas.1318960111
McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).
doi: 10.1126/science.1255641
Worm, B., Sandow, M., Oschlies, A., Lotze, H. K. & Myers, R. A. Global patterns of predator diversity in the open oceans. Science 309, 1365–1369 (2005).
doi: 10.1126/science.1113399
Queiroz, N. et al. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. Proc. Natl Acad. Sci. USA 113, 1582–1587 (2016).
doi: 10.1073/pnas.1510090113
Scales, K. L. et al. Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 115, 7362–7367 (2018).
doi: 10.1073/pnas.1801270115
O’Connor, S., Ono, R. & Clarkson, C. Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science 334, 1117–1121 (2011).
doi: 10.1126/science.1207703
Tickler, D., Meeuwig, J.J., Palomares, M.-L., Pauly, D., Zeller, D. Far from home: distance patterns of global fishing fleets. Sci. Adv. 4, eaar3279 (2018).
doi: 10.1126/sciadv.aar3279
Lea, J. S. E. et al. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci. Rep. 5, 11202 (2015).
doi: 10.1038/srep11202
Guzman, H. M., Comez, C. G., Hearn, A. & Eckert, S. A. Longest recorded trans-Pacific migration of a whale shark (Rhincodon typus). Mar. Biodivers. Rec. 11, 8 (2018).
doi: 10.1186/s41200-018-0143-4
Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).
doi: 10.1038/nature10082
Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
doi: 10.1016/j.marpol.2012.12.034
Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Science 299, 389–392 (2003).
doi: 10.1126/science.1079777
Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).
pubmed: 20528897
Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
doi: 10.1016/j.marpol.2014.12.017
Campana, S. E. Transboundary movements, unmonitored fishing mortality, and ineffective international fisheries management pose risks for pelagic sharks in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 73, 1599–1607 (2016).
doi: 10.1139/cjfas-2015-0502
International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the 2017 ICCAT Shortfin Mako Assessment Meeting (Madrid, Spain). https://www.iccat.int/en/assess.html (2017).
International Commission for the Conservation of Atlantic Tunas. Report of the Standing Committee on Research and Statistics (SCRS). doc. no. PLE 104/2017 https://www.iccat.int/en/scrs.html (2017).
Kroodsma, D.A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
doi: 10.1126/science.aao5646
Kroodsma, D.A. et al. Response to Comment on “Tracking the global footprint of fisheries”. Science 361, eaat7789 (2018).
doi: 10.1126/science.aat7789
McCauley, D. J. et al. Ending hide and seek at sea. Science 351, 1148–1150 (2016).
doi: 10.1126/science.aad5686
Shepperson, J. L. et al. A comparison of VMS and AIS data: the effect of data coverage and vessel position recording frequency on estimates of fishing footprints. ICES J. Mar. Sci. 75, 988–998 (2018).
doi: 10.1093/icesjms/fsx230
Sala, E. et al. The economics of fishing the high seas. Sci. Adv. 4, eaat2504 (2018).
doi: 10.1126/sciadv.aat2504
Scales, K. L. et al. On the front line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol. 51, 1575–1583 (2014).
doi: 10.1111/1365-2664.12330
Fields, A. T. et al. Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong. Conserv. Biol. 32, 376–389 (2018).
doi: 10.1111/cobi.13043
Curtis, T. H. et al. Seasonal distribution and historic trends in abundance of white sharks, Carcharodon carcharias, in the western North Atlantic Ocean. PLoS ONE 9, e99240 (2014).
doi: 10.1371/journal.pone.0099240
Kohler, N. E. & Turner, P. A. Shark tagging: a review of conventional methods and studies. Environ. Biol. Fishes 60, 191–224 (2001).
doi: 10.1023/A:1007679303082
Byrne, M. E. et al. Satellite telemetry reveals higher fishing mortality rates than previously estimated, suggesting overfishing of an apex marine predator. Proc. R. Soc. Lond. B 284, 20170658 (2017).
doi: 10.1098/rspb.2017.0658
O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).
doi: 10.1093/biosci/biy021
Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).
doi: 10.1016/j.tree.2019.01.009
Sequeira, A. M. M. et al. Convergence of marine megafauna movement patterns in coastal and open oceans. Proc. Natl Acad. Sci. USA 115, 3072–3077 (2018).
doi: 10.1073/pnas.1716137115
Wilson, R. P., Ducamp, J.-J., Rees, W. G., Culik, B. M. & Niekamp, K. in Wildlife Telemetry (eds Priede, I. G. & Swift, S. M.) 131–134 (Ellis Horwood, Chichester, 1992).
Delong, R. L., Stewart, B. S. & Hill, R. D. Documenting migrations of northern elephant seals using day length. Mar. Mamm. Sci. 8, 155–159 (1992).
doi: 10.1111/j.1748-7692.1992.tb00375.x
Lam, C., Nielsen, A. & Sibert, J. Improving light and temperature based geolocation by unscented Kalman filtering. Fish. Res. 91, 15–25 (2008).
doi: 10.1016/j.fishres.2007.11.002
Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).
doi: 10.1890/07-1032.1
Sippel, T., Holdsworth, J., Dennis, T. & Montgomery, J. Investigating behaviour and population dynamics of striped marlin (Kajikia audax) from the southwest Pacific Ocean with satellite tags. PLoS ONE 6, e21087 (2011).
doi: 10.1371/journal.pone.0021087
Jonsen, I. D., Flemming, J. M. & Myers, A. E. Robust state-space modeling of animal movement data. Ecology 86, 2874–2880 (2005).
doi: 10.1890/04-1852
Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. WinBUGS – a Bayesian modelling framework: 472 concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000).
doi: 10.1023/A:1008929526011
Ward-Paige, C. A., Britten, G. L., Bethea, D. M. & Carlson, J. K. Characterizing and predicting essential habitat features for juvenile coastal sharks. Mar. Ecol. (Berl.) 36, 419–431 (2014).
doi: 10.1111/maec.12151
Queiroz, N. et al. Convergent foraging tactics of marine predators with different feeding strategies across heterogeneous ocean environments. Front. Mar. Sci. 4, 239 (2017).
doi: 10.3389/fmars.2017.00239
Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C. & Langlois, T. J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 8, 6104–6113 (2018).
doi: 10.1002/ece3.4134
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
doi: 10.1177/0049124104268644
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Series B Stat. Methodol. 73, 3–36 (2011).
doi: 10.1111/j.1467-9868.2010.00749.x
Teo, S. L. H. et al. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. Ecol. Prog. Ser. 283, 81–98 (2004).
doi: 10.3354/meps283081
Nielsen, A., Bigelow, K. A., Musyl, M. K. & Sibert, J. R. Improving light-based geolocation by including sea surface temperature. Fish. Oceanogr. 15, 314–325 (2006).
doi: 10.1111/j.1365-2419.2005.00401.x
Sims, D. W. in Sharks and Their Relatives II – Biodiversity, Adaptive Physiology and Conservation (eds Carrier, J. C. et al.) 351–392 (CRC, Boca Raton, 2010).
Amoroso, R. O., Parma, A. M., Pitcher, C. R., McConnaughey, R. A. & Jennings, S. Comment on “Tracking the global footprint of fisheries”. Science 361, eaat6713 (2018).
doi: 10.1126/science.aat6713
Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The Argos–CLS Kalman filter: error structures and state-space modelling relative to Fastloc GPS data. PLoS ONE 10, e0124754 (2015).
doi: 10.1371/journal.pone.0124754