Rorβ regulates selective axon-target innervation in the mammalian midbrain.
Animals
Animals, Newborn
Axons
/ physiology
Embryo, Mammalian
Female
Geniculate Bodies
/ physiology
HEK293 Cells
Humans
Male
Mesencephalon
/ cytology
Mice
Mice, Transgenic
Neurons
/ metabolism
Nuclear Receptor Subfamily 1, Group F, Member 2
/ genetics
Pregnancy
Superior Colliculi
/ physiology
Visual Pathways
/ metabolism
Axon targeting
FLP-DOG
Midbrain
Rorβ
Superior colliculus
Thalamus
Journal
Development (Cambridge, England)
ISSN: 1477-9129
Titre abrégé: Development
Pays: England
ID NLM: 8701744
Informations de publication
Date de publication:
22 07 2019
22 07 2019
Historique:
received:
17
09
2018
accepted:
23
06
2019
entrez:
24
7
2019
pubmed:
25
7
2019
medline:
7
7
2020
Statut:
epublish
Résumé
Developmental control of long-range neuronal connections in the mammalian midbrain remains unclear. We explored the mechanisms regulating target selection of the developing superior colliculus (SC). The SC is a midbrain center that directs orienting behaviors and defense responses. We discovered that a transcription factor, Rorβ, controls establishment of axonal projections from the SC to two thalamic nuclei: the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP). A genetic strategy used to visualize SC circuits revealed that in control animals Rorβ
Identifiants
pubmed: 31332038
pii: 146/14/dev171926
doi: 10.1242/dev.171926
pmc: PMC6679361
pii:
doi:
Substances chimiques
Nuclear Receptor Subfamily 1, Group F, Member 2
0
Rorb protein, mouse
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NEI NIH HHS
ID : P30 EY026878
Pays : United States
Organisme : NEI NIH HHS
ID : R21 EY029820
Pays : United States
Informations de copyright
© 2019. Published by The Company of Biologists Ltd.
Déclaration de conflit d'intérêts
Competing interestsThe authors declare no competing or financial interests.
Références
Genes Dev. 2000 Jun 1;14(11):1377-89
pubmed: 10837030
Science. 2002 Dec 6;298(5600):1959-64
pubmed: 12471249
Brain Res. 1992 Feb 28;573(2):197-203
pubmed: 1354547
Neuron. 2005 Jan 20;45(2):207-21
pubmed: 15664173
Prog Brain Res. 2006;151:321-78
pubmed: 16221594
J Comp Neurol. 1991 Feb 8;304(2):275-306
pubmed: 1707899
Nat Neurosci. 2007 Jan;10(1):19-26
pubmed: 17189949
Nat Protoc. 2006;1(3):1552-8
pubmed: 17406448
Annu Rev Cell Dev Biol. 2009;25:161-95
pubmed: 19575668
Nat Neurosci. 2010 Jan;13(1):133-40
pubmed: 20023653
Cold Spring Harb Perspect Biol. 2010 Nov;2(11):a001768
pubmed: 20880989
Cereb Cortex. 2012 May;22(5):996-1006
pubmed: 21799210
Annu Rev Neurosci. 1990;13:129-54
pubmed: 2183671
J Comp Neurol. 2012 May 1;520(7):1562-83
pubmed: 22102330
Nat Commun. 2013;4:1813
pubmed: 23652001
Eur J Med Genet. 2014 Jan;57(1):44-6
pubmed: 24355400
Nat Commun. 2015 Apr 09;6:6756
pubmed: 25854147
J Neurosci. 2015 Jul 22;35(29):10523-34
pubmed: 26203147
J Neurosci. 2015 Jul 29;35(30):10685-700
pubmed: 26224854
Annu Rev Cell Dev Biol. 2015;31:779-805
pubmed: 26436703
J Comp Neurol. 2016 Aug 1;524(11):2300-21
pubmed: 26713509
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3371-6
pubmed: 26951672
Neuron. 2016 Jul 6;91(1):90-106
pubmed: 27321927
Eur J Hum Genet. 2016 Dec;24(12):1761-1770
pubmed: 27352968
Cell. 2017 Jan 12;168(1-2):295-310.e19
pubmed: 28041852
Nat Commun. 2017 Feb 03;8:14172
pubmed: 28155854
Cell Rep. 2017 Mar 14;18(11):2687-2701
pubmed: 28297672
Annu Rev Vis Sci. 2017 Sep 15;3:197-226
pubmed: 28617660
Methods Mol Biol. 2017;1642:109-126
pubmed: 28815497
Vis Neurosci. 2017 Jan;34:E011
pubmed: 28965504
Nat Commun. 2018 Mar 26;9(1):1232
pubmed: 29581428
Annu Rev Vis Sci. 2018 Sep 15;4:239-262
pubmed: 29852095
Nat Commun. 2018 Sep 25;9(1):3895
pubmed: 30254324
Brain Res. 1986 Apr 2;370(1):144-8
pubmed: 3708316
J Comp Neurol. 1986 Jun 15;248(3):395-409
pubmed: 3722463
J Anat. 1997 May;190 ( Pt 4):481-90
pubmed: 9183672
EMBO J. 1998 Jul 15;17(14):3867-77
pubmed: 9670004