(R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism.
Animals
Disease Models, Animal
Dopamine
/ metabolism
Dose-Response Relationship, Drug
Ketamine
/ administration & dosage
Lipopolysaccharides
Male
Mice
Microdialysis
Microinjections
Norepinephrine
/ metabolism
Prefrontal Cortex
/ metabolism
Quinoxalines
/ pharmacology
Receptors, AMPA
/ metabolism
Serotonin
/ metabolism
Stereoisomerism
(R)-ketamine
(S)-ketamine
AMPA receptors
monoamine
prefrontal cortex
Journal
The international journal of neuropsychopharmacology
ISSN: 1469-5111
Titre abrégé: Int J Neuropsychopharmacol
Pays: England
ID NLM: 9815893
Informations de publication
Date de publication:
01 10 2019
01 10 2019
Historique:
received:
13
06
2019
revised:
02
07
2019
accepted:
16
07
2019
pubmed:
22
7
2019
medline:
20
5
2020
entrez:
21
7
2019
Statut:
ppublish
Résumé
Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice. The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis. (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine. (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Sections du résumé
BACKGROUND
Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.
METHODS
The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.
RESULTS
(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.
CONCLUSIONS
(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Identifiants
pubmed: 31325908
pii: 5536638
doi: 10.1093/ijnp/pyz041
pmc: PMC6822138
doi:
Substances chimiques
Lipopolysaccharides
0
Quinoxalines
0
Receptors, AMPA
0
2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
118876-58-7
Serotonin
333DO1RDJY
Ketamine
690G0D6V8H
Dopamine
VTD58H1Z2X
Norepinephrine
X4W3ENH1CV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
665-674Informations de copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
Références
Int J Neuropsychopharmacol. 2014 Aug;17(8):1321-6
pubmed: 24852262
Int J Neuropsychopharmacol. 2014 Jun;17(6):883-93
pubmed: 24405605
Pharmacol Rep. 2018 Oct;70(5):837-846
pubmed: 30086517
Biol Psychiatry. 2018 Jul 1;84(1):e3-e6
pubmed: 29174592
Biol Psychiatry. 2008 Feb 15;63(4):349-52
pubmed: 17643398
Mol Psychiatry. 2019 Mar 20;:
pubmed: 30894661
Eur Arch Psychiatry Clin Neurosci. 2017 Mar;267(2):173-176
pubmed: 27091456
Eur Psychiatry. 2014 Sep;29(7):419-23
pubmed: 24321772
Biol Psychiatry. 2013 Aug 15;74(4):250-6
pubmed: 22840761
J Pharmacol Sci. 2012;120(2):63-9
pubmed: 22986366
Arch Gen Psychiatry. 2006 Aug;63(8):856-64
pubmed: 16894061
Psychopharmacology (Berl). 2013 Jul;228(1):157-66
pubmed: 23455595
J Clin Neurosci. 2008 Nov;15(11):1264-9
pubmed: 18815045
Neuropsychopharmacology. 2016 Mar;41(4):1046-56
pubmed: 26245499
Am J Psychiatry. 2006 Jan;163(1):153-5
pubmed: 16390905
Biol Psychiatry. 2013 Aug 15;74(4):257-64
pubmed: 23206319
JAMA Psychiatry. 2018 Feb 1;75(2):139-148
pubmed: 29282469
Neuropsychopharmacology. 2013 Aug;38(9):1609-16
pubmed: 23511700
Pharmacol Biochem Behav. 2014 Jan;116:137-41
pubmed: 24316345
Sci Signal. 2016 Dec 13;9(458):ra123
pubmed: 27965425
Neurosci Lett. 1999 Oct 22;274(2):131-4
pubmed: 10553955
J Clin Psychiatry. 2013 Oct;74(10):966-73
pubmed: 24229746
J Pharmacol Exp Ther. 2016 Jul;358(1):71-82
pubmed: 27189960
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):297-302
pubmed: 30559184
Am J Psychiatry. 2018 Jul 1;175(7):620-630
pubmed: 29656663
J Pharmacol Exp Ther. 2017 Apr;361(1):9-16
pubmed: 28115553
Neuropsychopharmacology. 2005 Jan;30(1):43-51
pubmed: 15383832
Nature. 2016 May 04;533(7604):481-6
pubmed: 27144355
Neuropsychopharmacology. 2017 Dec;42(13):2482-2492
pubmed: 28492279
Am J Psychiatry. 2015 Oct;172(10):950-66
pubmed: 26423481
Neuropsychopharmacology. 2013 Jul;38(8):1535-47
pubmed: 23426384
Biol Psychiatry. 2009 Sep 1;66(5):522-6
pubmed: 19545857
Nat Commun. 2019 Jan 15;10(1):223
pubmed: 30644390
Am J Psychiatry. 2018 Apr 1;175(4):327-335
pubmed: 29202655
Curr Neuropharmacol. 2017;15(7):963-976
pubmed: 28228087
Prog Neuropsychopharmacol Biol Psychiatry. 2016 Nov 3;71:27-38
pubmed: 27262695
Neuropsychopharmacology. 2017 Jan;42(1):368-369
pubmed: 27909322
Behav Brain Res. 2014 Sep 1;271:111-5
pubmed: 24909673
Eur J Pharmacol. 1997 Aug 20;333(1):99-104
pubmed: 9311667
Biol Psychiatry. 2017 Sep 1;82(5):e43-e44
pubmed: 28104224
Neuropsychopharmacology. 2013 Dec;38(13):2666-74
pubmed: 23880871
Anesthesiology. 1998 Mar;88(3):768-74
pubmed: 9523822
Transl Psychiatry. 2017 Dec 18;7(12):1294
pubmed: 29249803
Psychol Med. 2015 Dec;45(16):3571-80
pubmed: 26266877
Biol Psychiatry. 2000 Feb 15;47(4):351-4
pubmed: 10686270
Psychopharmacology (Berl). 2016 Jul;233(14):2813-25
pubmed: 27236785
Int J Neuropsychopharmacol. 2018 Mar 1;21(3):305-310
pubmed: 29370396
Int J Neuropsychopharmacol. 2017 May 1;20(5):410-421
pubmed: 28034961
Behav Brain Res. 2011 Oct 10;224(1):107-11
pubmed: 21669235
Int J Neuropsychopharmacol. 2014 Oct 31;18(4):null
pubmed: 25628381
Autism Res. 2016 Sep;9(9):926-39
pubmed: 26714434
Psychopharmacology (Berl). 2014 Apr;231(8):1627-36
pubmed: 24271009
Neuropharmacology. 2017 Jan;112(Pt A):198-209
pubmed: 27211253
Am J Psychiatry. 2018 Feb 01;175(2):150-158
pubmed: 28969441
Transl Psychiatry. 2015 Sep 01;5:e632
pubmed: 26327690
Neuroscience. 2003;117(3):697-706
pubmed: 12617973
Pharmacol Rep. 2013;65(6):1535-44
pubmed: 24553002
Neuropsychopharmacology. 2018 Aug;43(9):1900-1907
pubmed: 29802366
Int J Neuropsychopharmacol. 2018 Feb 1;21(2):157-163
pubmed: 29155989
Neuropsychopharmacology. 2017 Mar;42(4):844-853
pubmed: 27681442
Eur J Pharmacol. 2017 Aug 15;809:172-177
pubmed: 28529139
Mol Psychiatry. 2018 Apr;23(4):801-811
pubmed: 29532791
Biol Psychiatry. 2018 Jan 1;83(1):18-28
pubmed: 28651788
Int J Neuropsychopharmacol. 2018 Apr 1;21(4):371-381
pubmed: 29309585
Eur Arch Psychiatry Clin Neurosci. 2019 Mar 29;:null
pubmed: 30927075
Neuropharmacology. 2018 Sep 1;139:1-12
pubmed: 29953886
Biol Psychiatry. 2018 Oct 15;84(8):591-600
pubmed: 29945718