Symptomatic and asymptomatic cases of African swine fever in Tanzania.


Journal

Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538

Informations de publication

Date de publication:
Nov 2019
Historique:
received: 19 03 2019
revised: 12 07 2019
accepted: 12 07 2019
pubmed: 22 7 2019
medline: 13 2 2020
entrez: 21 7 2019
Statut: ppublish

Résumé

African swine fever (ASF) is an acute, highly contagious and deadly viral haemorrhagic disease of domestic pigs caused by African swine fever virus (ASFV). In ASF endemic countries, there are an increasing number of reports on circulating ASFV strains with different levels of virulence causing a broad range of clinical symptoms in susceptible animals. Tanzania, where ASFV is endemic since 2001, recorded several outbreaks including symptomatic and asymptomatic cases between 2015 and 2017. We collected 35 clinical samples from four outbreaks for diagnostic confirmation and sequenced the partial B646L (p72), the full E183L (p54) gene, the central variable region of the B602L gene and the intergenic region between the I73R and I329L genes to characterize molecularly the new ASFV isolates and analyse their relatedness with previously reported Tanzanian and foreign isolates. We detected ASFV in 21 samples, 15 from symptomatic and six from asymptomatic pigs. Phylogenetic analyses based on the partial p72 gene and the complete p54 (E183L) genes revealed that the ASFVs in samples from symptomatic pigs belonged to genotypes II and those in samples from asymptomatic pigs belonged to genotype IX. The CVR profiles of the p72 genotype II and genotype IX isolates differed between each other and from previously published Tanzanian sequences. The sequence analysis of the intergenic region between the I73R and I329L for the 2017 genotype II isolates showed the absence of one GGAATATATA motif in those isolates. This study showed the simultaneous circulation of two different ASFV genotypes with different levels of pathogenicity in Tanzania. Since the existence of sub-clinically infected pigs may contribute to the persistence of the virus, our findings suggest continuous surveillance and characterization of ASFV isolates in disease-endemic regions.

Identifiants

pubmed: 31325213
doi: 10.1111/tbed.13298
doi:

Substances chimiques

DNA, Intergenic 0

Banques de données

GENBANK
['GQ410770', 'GQ410769', 'KF706366', 'KF706367', 'KF706365', 'KF706364']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2402-2410

Subventions

Organisme : International Atomic Energy Agency (IAEA)
Organisme : Government of Tanzania through the Ministry of Livestock Development and Fisheries

Informations de copyright

© 2019 Blackwell Verlag GmbH.

Références

Abworo, E. O., Onzere, C., Amimo, J. O., Riitho, V., Mwangi, W., Davies, J., … Bishop, R. P. (2017). Detection of African swine fever virus in the tissues of asymptomatic pigs in smallholder farming systems along the Kenya-Uganda border: Implications for transmission in endemic areas and ASF surveillance in East Africa. Journal of General Virology, 98(7), 1806-1814. https://doi.org/10.1099/jgv.0.000848
Achenbach, J. E., Gallardo, C., Nieto-Pelegrín, E., Rivera-Arroyo, B., Degefa-Negi, T., Arias, M., … Sánchez-Vizcaíno, J. M. (2017). Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transboundary and Emerging Diseases, 64(5), 1393-1404. https://doi.org/10.1111/tbed.12511
Agüero, M., Fernández, J., Romero, L., Mascaraque, C. S., Arias, M., & Sánchez-Vizcaíno, J. M. (2003). Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples. Journal of Clinical Microbiology, 41(9), 4431-4434. https://doi.org/10.1128/JCM.41.9.4431-4434.2003
Atuhaire, D. K., Afayoa, M., Ochwo, S., Mwesigwa, S., Mwiine, F. N., Okuni, J. B., … Ojok, L. (2013). Prevalence of African swine fever virus in apparently healthy domestic pigs in Uganda. BMC Veterinary Research, 9(1), 263. https://doi.org/10.1186/1746-6148-9-263
Bastos, A. D. S., Penrith, M. L., Crucière, C., Edrich, J. L., Hutchings, G., Roger, F., … Thomson, G. R. (2003). Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 148(4), 693-706. https://doi.org/10.1007/s00705-002-0946-8
Bengis, R. G., Kock, R. A., & Fischer, J. (2002). Infectious animal diseases: The wildlife/livestock interface. Revue Scientifique et Technique, 21, 53-65. https://doi.org/10.20506/rst.21.1.1322
Bishop, R. P., Fleischauer, C., de Villiers, E. P., Okoth, E. A., Arias, M., Gallardo, C., & Upton, C. (2015). Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes, 50(2), 303-309. https://doi.org/10.1007/s11262-014-1156-7
Boshoff, C. I., Bastos, A. D. S., Gerber, L. J., & Vosloo, W. (2007). Genetic characterisation of African swine fever viruses from outbreaks in southern Africa (1973-1999). Veterinary Microbiology, 121(1-2), 45-55. https://doi.org/10.1016/j.vetmic.2006.11.007
Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J. M., & Pfeiffer, D. U. (2013). Epidemiology of African swine fever virus. Virus Research, 173(1), 191-197. https://doi.org/10.1016/j.virusres.2012.10.030
Dixon, L. K., Alonso, C., Escribano, J. M., Martins, J. M., Revilla, Y., Salas, M. L., & Takamatsu, H. (2012). Asfarviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens & E. J. Lefkowitz (Eds.), Virus taxonomy (pp. 153-162). Amsterdam, the Netherlands: Elsevier Aca-demic Press.
Gallardo, C., Fernández-Pinero, J., Pelayo, V., Gazaev, I., Markowska-Daniel, I., Pridotkas, G., … Arias, M. (2014). Genetic variation among African swine fever genotype II viruses, Eastern and Central Europe. Emerging Infectious Diseases, 20(9), 1544-1547. https://doi.org/10.3201/eid2009.140554
Gallardo, C., Mwaengo, D. M., MacHaria, J. M., Arias, M., Taracha, E. A., Soler, A., … Bishop, R. P. (2009). Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes, 38(1), 85-95. https://doi.org/10.1007/s11262-008-0293-2
Gallardo, C., Okoth, E., Pelayo, V., Anchuelo, R., Martín, E., Simón, A., … Bishop, R. P. (2011). African swine fever viruses with two different genotypes, both of which occur in domestic pigs, are associated with ticks and adult warthogs, respectively, at a single geographical site. Journal of General Virology, 92(2), 432-444. https://doi.org/10.1099/vir.0.025874-0
Gallardo, M. C., Reoyo, A. D. L. T., Fernández-Pinero, J., Iglesias, I., Muñoz, M. J., & Arias, M. L. (2015). African swine fever: A global view of the current challenge. Porcine Health Management, 1(1), 21. https://doi.org/10.1186/s40813-015-0013-y
Irusta, P. M., Borca, M. V., Kutish, G. F., Lu, Z., Caler, E., Carrllo, C., & Rock, D. L. (1996). Amino acid tandem repeats within a late viral gene define the central variable region of African swine fever virus. Virology, 220(1), 20-27. https://doi.org/10.1006/viro.1996.0281
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0. molecular biology and evolution. Molecular Biology and Evolution, 33(7), 1870-1874.
Lubisi, B. A., Bastos, A. D. S., Dwarka, R. M., & Vosloo, W. (2005). Molecular epidemiology of African swine fever in East Africa. Archives of Virology, 150(12), 2439-2452. https://doi.org/10.1007/s00705-005-0602-1
Lubisi, B. A., Bastos, A. D. S., Dwarka, R. M., & Vosloo, W. (2007). Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: A combined p72-CVR approach. Virus Genes, 35(3), 729-735. https://doi.org/10.1007/s11262-007-0148-2
Masembe, C., Sreenu, V. B., Da Silva Filipe, A., Wilkie, G. S., Ogweng, P., Mayega, F. J., … Davison, A. J. (2018). Genome sequences of five African swine fever virus genotype IX isolates from domestic pigs in Uganda. Microbiology Resource Announcements, 7(13), e01018-8. https://doi.org/10.1128/MRA.01018-18
Misinzo, G., Kasanga, C. J., Mpelumbe-Ngeleja, C., Masambu, J., Kitambi, A., & van Doorsselaere, J. (2012). African swine fever virus, Tanzania, 2010-2012. Emerging Infectious Diseases, 18(12), 2081-2083. https://doi.org/10.3201/eid1812.121083
Misinzo, G., Kwavi, D. E., Sikombe, C. D., Makange, M., Peter, E., Muhairwa, A. P., & Madege, M. J. (2014). Molecular characterization of African swine fever virus from domestic pigs in northern Tanzania during an outbreak in 2013. Tropical Animal Health and Production, 46(7), 1199-1207. https://doi.org/10.1007/s11250-014-0628-z
Misinzo, G., Magambo, J., Masambu, J., Yongolo, M. G., Van Doorsselaere, J., & Nauwynck, H. J. (2011). Genetic characterization of African swine fever viruses from a 2008 outbreak in Tanzania. Transboundary and Emerging Diseases, 58(1), 86-92. https://doi.org/10.1111/j.1865-1682.2010.01177.x
Mulumba-Mfumu, L. K., Achenbach, J. E., Mauldin, M. R., Dixon, L. K., Tshilenge, C. G., Thiry, E., … Diallo, A. (2017). Genetic assessment of African swine fever isolates involved in outbreaks in the Democratic Republic of Congo between 2005 and 2012 reveals co-circulation of p72 genotypes I, IX and XIV, including 19 variants. Viruses, 9(2), 31. https://doi.org/10.3390/v9020031
Nix, R. J., Gallardo, C., Hutchings, G., Blanco, E., & Dixon, L. K. (2006). Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Archives of Virology, 151(12), 2475-2494. https://doi.org/10.1007/s00705-006-0794-z
Nurmoja, I., Petrov, A., Breidenstein, C., Zani, L., Forth, J. H., Beer, M., … Blome, S. (2017). Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transboundary and Emerging Diseases, 64(6), 2034-2041. https://doi.org/10.1111/tbed.12614
Okoth, E., Gallardo, C., Macharia, J. M., Omore, A., Pelayo, V., Bulimo, D. W., … Bishop, R. P. (2013). Comparison of African swine fever virus prevalence and risk in two contrasting pig-farming systems in South-west and Central Kenya. Preventive Veterinary Medicine, 110(2), 198-205. https://doi.org/10.1016/j.prevetmed.2012.11.012
Onzere, C. K., Bastos, A. D., Okoth, E. A., Lichoti, J. K., Bochere, E. N., Owido, M. G., … Bishop, R. P. (2018). Multi-locus sequence typing of African swine fever viruses from endemic regions of Kenya and Eastern Uganda (2011-2013) reveals rapid B602L central variable region evolution. Virus Genes, 54(1), 111-123. https://doi.org/10.1007/s11262-017-1521-4
Penrith, M.-L. (2009). African swine fever. Onderstepoort Journal of Veterinary Research, 76, 91-95.
Petrov, A., Forth, J. H., Zani, L., Beer, M., & Blome, S. (2018). No evidence for long-term carrier status of pigs after African swine fever virus infection. Transboundary and Emerging Diseases, 65(5), 1318-1328. https://doi.org/10.1111/tbed.12881
Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 152(1), 9-21. https://doi.org/10.1016/j.jcpa.2014.09.003
Uttenthal, A., Braae, U. C., Ngowi, H. A., Rasmussen, T. B., Nielsen, J., & Johansen, M. V. (2013). ASFV in Tanzania: Asymptomatic pigs harbor virus of molecular similarity to Georgia 2007. Veterinary Microbiology, 165(1-2), 173-176. https://doi.org/10.1016/j.vetmic.2013.01.003
Wilkinson, P. (1989). African swine fever virus. In M. B. Pensaert (Ed.), Virus infections of porcines (pp. 17-35). Amsterdam, The Netherlands: Elsevier Science Publishers.

Auteurs

Jelly S Chang'a (JS)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Charles Mayenga (C)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Tirumala Bharani K Settypalli (TBK)

Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.

Jenna E Achenbach (JE)

Battelle Memorial Institute, Charlottesville, Virginia.

Julius J Mwanandota (JJ)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Bishop Magidanga (B)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Giovanni Cattoli (G)

Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.

Mashaka Jeremiah (M)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Aloyce Kamigwe (A)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Shukuru Guo (S)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Denis Kalabi (D)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Furaha Mramba (F)

Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania.

Charles E Lamien (CE)

Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH