Enzymatic Cascade in Pseudomonas that Produces Pyrazine from α-Amino Acids.


Journal

Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360

Informations de publication

Date de publication:
03 02 2020
Historique:
received: 18 07 2019
pubmed: 20 7 2019
medline: 2 3 2021
entrez: 20 7 2019
Statut: ppublish

Résumé

Pyrazines are widespread chemical compounds that include pheromones and odors. Herein, a novel mechanism used by Pseudomonas fluorescens SBW25 to biosynthesize monocyclic pyrazines is reported. Heterologous expression of the papABC genes that synthesize the natural α-amino acid 4-aminophenylalanine (4APhe), together with three adjacent papDEF genes of unknown function, in Escherichia coli resulted in the production of 2,5-dimethyl-3,6-bis(4-aminobenzyl)pyrazine (DMBAP), which comprised two symmetrical aminobenzyl moieties derived from 4APhe. It is found that PapD is a novel amino acid C-acetyltransferase, which decarboxylates and transfers acetyl residues to 4APhe, to generate an α-aminoketone, which spontaneously dehydrates and condenses to give dihydro DMBAP. PapF is a novel oxidase in the amine oxidase superfamily that oxidizes dihydro DMBAP to yield the pyrazine ring of DMBAP. These two enzymes constitute a unique mechanism for synthesizing monocyclic pyrazines and might serve as a novel strategy for the enzymatic synthesis of pyrazine derivatives from natural α-amino acids.

Identifiants

pubmed: 31322801
doi: 10.1002/cbic.201900448
doi:

Substances chimiques

Amino Acids 0
Pyrazines 0
Oxidoreductases EC 1.-
Acetyltransferases EC 2.3.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

353-359

Informations de copyright

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

M. Dolezal, J. Zitko, Expert Opin. Ther. Pat. 2015, 25, 33-47.
 
G. W. H. Cheeseman, E. S. G. Werstiuk, Adv. Heterocycl. Chem. 1972, 14, 99-209;
Z. Wang in Comprehensive Organic Name Reactions and Reagents, Vol. 3 (Ed.: Z. Wang), Wiley, Hoboken, 2010, pp. 1302-1304.
 
T. Kosuge, H. Kamiya, Nature 1962, 193, 776;
J. C. Macdonald, J. Biol. Chem. 1961, 236, 512-514;
J. D. Dutcher, J. Biol. Chem. 1947, 171, 341-353.
 
K. S. Rajini, P. Aparna, C. Sasikala, Ch. V. Ramana, Crit. Rev. Microbiol. 2011, 37, 99-112;
G. Dunn, G. T. Newbold, F. S. Spring, J. Chem. Soc. 1949, 2586-2587;
R. G. Micetich, J. C. Macdonald, J. Biol. Chem. 1965, 240, 1692-1695;
J. S. Dickschat, S. Wickel, C. J. Bolten, T. Nawrath, S. Schulz, C. Wittmann, Eur. J. Org. Chem. 2010, 2687-2695;
G. Molla, M. Nardini, P. Motta, P. D′Arrigo, W. Panzeri, L. Pollegioni, Biochem. J. 2014, 464, 387-399.
E. A. Silva-Junior, A. C. Ruzzini, C. R. Paludo, F. S. Nascimento, C. R. Currie, J. Clardy, M. T. Pupo, Sci. Rep. 2018, 8, 2595.
K. Papenfort, J. E. Silpe, K. R. Schramma, J. P. Cong, M. R. Seyadsayamdost, B. L. Bassler, Nat. Chem. Biol. 2017, 13, 551-557.
J. Xu, A. P. Green, N. J. Turner, Angew. Chem. Int. Ed. 2018, 57, 16760-16763;
Angew. Chem. 2018, 130, 17002-17005.
S. Masuo, S. Zhou, T. Kaneko, N. Takaya, Sci. Rep. 2016, 6, 25764.
L. T. Fernández-Martínez, C. Borsetto, J. P. Gomez-Escribano, M. J. Bibb, M. M. Al-Bassam, G. Chandra, M. J. Bibb, Antimicrob. Agents Chemother. 2014, 58, 7441-7450.
 
J. E. Schaffer, M. R. Reck, N. K. Prasad, T. A. Wencewicz, Nat. Chem. Biol. 2017, 13, 737-744;
T. A. Scott, D. Heine, Z. Qin, B. Wilkinson, Nat. Commun. 2017, 8, 15935.
D. Alexeev, M. Alexeeva, R. L. Baxter, D. J. Campopiano, S. P. Webster, L. Sawyer, J. Mol. Biol. 1998, 284, 401-419.
J. Lowther, A. E. Beattie, P. R. R. Langridge-Smith, D. J. Clarke, D. J. Campopiano, Med Chem. Commun. 2012, 3, 1003-1008.
 
H. D. Dakin, R. West, J. Biol. Chem. 1928, 78, 757-764;
G. A. Hunter, E. Rivera, G. C. Ferreira, Arch. Biochem. Biophys. 2005, 437, 128-137.
M. L. Fonda, B. M. Anderson, J. Biol. Chem. 1967, 242, 3957-3962.
L. Pollegioni, G. Molla, S. Sacchi, E. Rosini, R. Verga, M. S. Pilone, Appl. Microbiol. Biotechnol. 2008, 78, 1-16.
 
M. T. Reetz, Angew. Chem. Int. Ed. Engl. 1991, 30, 1531-1546;
Angew. Chem. 1991, 103, 1559-1573;
J. M. Concellón, H. Rodríguez-Solla, Curr. Org. Chem. 2008, 12, 524-543;
M. Ochiai, Y.-S. Lin, J. Yamada, H. Misawa, S. Arai, K. Matsumoto, J. Am. Chem. Soc. 2004, 126, 2536-2545.
G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70-77.
V. Job, G. L. Marcone, M. S. Pilone, L. Pollegioni, J. Biol. Chem. 2002, 277, 6985-6993.

Auteurs

Shunsuke Masuo (S)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Yusuke Tsuda (Y)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Tomohito Namai (T)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Hajime Minakawa (H)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Ryosuke Shigemoto (R)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Naoki Takaya (N)

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Articles similaires

Humans Amyotrophic Lateral Sclerosis Male Middle Aged Female

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans
Mycobacterium smegmatis Bacterial Proteins CRISPR-Cas Systems Gene Expression Regulation, Bacterial Oxidoreductases
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology

Classifications MeSH