Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue.
Adipose Tissue
/ cytology
Animals
Brain-Derived Neurotrophic Factor
/ biosynthesis
Calcium
/ metabolism
Calcium Signaling
Cell Differentiation
Female
Hepatocyte Growth Factor
/ biosynthesis
Mesenchymal Stem Cells
/ cytology
Mice
Neuroglia
/ cytology
Neurons
/ cytology
Oxidative Stress
Vascular Endothelial Growth Factor A
/ biosynthesis
adipose tissue
mouse
muse cell
neuroregeneration
neurotrophic factor
Journal
Cell transplantation
ISSN: 1555-3892
Titre abrégé: Cell Transplant
Pays: United States
ID NLM: 9208854
Informations de publication
Date de publication:
Historique:
pubmed:
16
7
2019
medline:
19
8
2020
entrez:
16
7
2019
Statut:
ppublish
Résumé
Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent stem cells that can be isolated based on stage-specific embryonic antigen-3 (SSEA-3), a pluripotent stem cell-surface marker. However, their capacities for survival, neurotrophic factor secretion, and neuronal and glial differentiation are unclear in rodents. Here we analyzed mouse adipose tissue-derived Muse cells in vitro. We collected mesenchymal stem cells (MSCs) from C57BL/6 J mouse adipose tissue and separated SSEA-3
Identifiants
pubmed: 31304790
doi: 10.1177/0963689719863809
pmc: PMC6767880
doi:
Substances chimiques
Bdnf protein, mouse
0
Brain-Derived Neurotrophic Factor
0
HGF protein, mouse
0
Vascular Endothelial Growth Factor A
0
vascular endothelial growth factor A, mouse
0
Hepatocyte Growth Factor
67256-21-7
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1132-1139Références
Stem Cells Dev. 2010 Dec;19(12):1831-41
pubmed: 20394468
Cell Cycle. 2017 Jan 2;16(1):33-44
pubmed: 27463232
Cytotherapy. 2011 Jul;13(6):675-85
pubmed: 21231804
Cell Transplant. 2013;22(2):279-85
pubmed: 23006344
PLoS One. 2009 Nov 06;4(11):e7706
pubmed: 19893739
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8639-43
pubmed: 20421459
Circ Res. 2007 May 11;100(9):1249-60
pubmed: 17495232
Biomaterials. 2014 Feb;35(6):1924-31
pubmed: 24331711
Cell Transplant. 2015;24(11):2209-20
pubmed: 25581479
Stem Cells Transl Med. 2015 Feb;4(2):146-55
pubmed: 25561682
Stem Cells. 2016 Jan;34(1):160-73
pubmed: 26388204
Transl Res. 2014 Apr;163(4):399-408
pubmed: 24361334
Circ Res. 2018 Apr 13;122(8):1069-1083
pubmed: 29475983
Cell Reprogram. 2013 Jun;15(3):195-205
pubmed: 23668861
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9875-80
pubmed: 21628574
PLoS One. 2015 Mar 06;10(3):e0116009
pubmed: 25747577
Stem Cells Dev. 2014 Apr 1;23(7):717-28
pubmed: 24256547
J Neurochem. 2010 Nov;115(4):864-72
pubmed: 20456002
Nat Protoc. 2013;8(7):1391-415
pubmed: 23787896
PLoS One. 2011;6(11):e27706
pubmed: 22140459
Stroke. 2017 Feb;48(2):428-435
pubmed: 27999136
Stem Cells Dev. 2013 Apr 1;22(7):1042-52
pubmed: 23140086
Cell Transplant. 2017 May 9;26(5):821-840
pubmed: 27938474
Oncotarget. 2018 Apr 10;9(27):19328-19341
pubmed: 29721206
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12704-9
pubmed: 20615974
PLoS One. 2016 Jan 08;11(1):e0146646
pubmed: 26745800
PLoS One. 2009;4(3):e4987
pubmed: 19319198