Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy.
Journal
Chemical science
ISSN: 2041-6520
Titre abrégé: Chem Sci
Pays: England
ID NLM: 101545951
Informations de publication
Date de publication:
14 Jun 2019
14 Jun 2019
Historique:
received:
10
09
2018
accepted:
21
04
2019
entrez:
12
7
2019
pubmed:
12
7
2019
medline:
12
7
2019
Statut:
epublish
Résumé
Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2'-bipyridine)
Identifiants
pubmed: 31293761
doi: 10.1039/c8sc04023k
pii: c8sc04023k
pmc: PMC6568243
doi:
Types de publication
Journal Article
Langues
eng
Pagination
5749-5760Références
J Phys Chem B. 2006 Jun 22;110(24):11647-53
pubmed: 16800459
Phys Rev Lett. 2007 Feb 2;98(5):057401
pubmed: 17358897
J Am Chem Soc. 2007 Jul 4;129(26):8199-206
pubmed: 17559211
Science. 1988 Dec 23;242(4886):1645-53
pubmed: 17730575
Science. 2009 Jan 23;323(5913):489-92
pubmed: 19074309
J Chem Phys. 2009 Mar 28;130(12):124520
pubmed: 19334864
Chemphyschem. 2009 Aug 24;10(12):1958-80
pubmed: 19585639
Angew Chem Int Ed Engl. 2009;48(39):7184-7
pubmed: 19718731
Acta Crystallogr A. 2010 Mar;66(Pt 2):261-9
pubmed: 20164649
Chemistry. 2010 Apr 19;16(15):4550-6
pubmed: 20229537
Angew Chem Int Ed Engl. 2010 Aug 9;49(34):5910-2
pubmed: 20818772
Nature. 2010 Sep 23;467(7314):412-3
pubmed: 20864993
Annu Rev Phys Chem. 2012;63:325-52
pubmed: 22475338
J Phys Chem A. 2012 Oct 11;116(40):9878-87
pubmed: 22970732
J Phys Chem A. 2013 Jan 31;117(4):735-40
pubmed: 23281652
Phys Chem Chem Phys. 2013 Sep 28;15(36):15003-16
pubmed: 23918050
Chemistry. 2013 Dec 16;19(51):17541-51
pubmed: 24203780
Nature. 2014 May 15;509(7500):345-8
pubmed: 24805234
Faraday Discuss. 2015;177:443-65
pubmed: 25675434
Nature. 2015 Feb 19;518(7539):385-9
pubmed: 25693570
Nat Commun. 2015 Mar 02;6:6359
pubmed: 25727920
Sci Signal. 2015 Mar 10;8(367):ra26
pubmed: 25759477
Nat Commun. 2015 Apr 02;6:6772
pubmed: 25832715
J Synchrotron Radiat. 2015 May;22(3):503-7
pubmed: 25931060
Nat Chem. 2015 Aug;7(8):629-33
pubmed: 26201738
J Phys Chem Lett. 2011 Apr 21;2(8):880-4
pubmed: 26295622
J Phys Chem B. 2016 Feb 18;120(6):1158-68
pubmed: 26783685
Phys Rev Lett. 2016 Jul 1;117(1):013002
pubmed: 27419566
Nat Commun. 2016 Nov 28;7:13678
pubmed: 27892472
Chem Sci. 2017 Jan 1;8(1):515-523
pubmed: 28451198
Nat Commun. 2017 May 24;8:15342
pubmed: 28537270
Struct Dyn. 2017 Jun 06;4(4):044030
pubmed: 28653021
Chem Rev. 2017 Aug 23;117(16):11025-11065
pubmed: 28692268
Chem Rev. 2017 Aug 23;117(16):10940-11024
pubmed: 28805062
Chemistry. 2018 Apr 6;24(20):5146-5152
pubmed: 29143986
Phys Chem Chem Phys. 2018 Jan 24;20(4):2351-2355
pubmed: 29303522
Phys Chem Chem Phys. 2018 Feb 28;20(9):6236-6253
pubmed: 29431837
J Synchrotron Radiat. 2018 Mar 1;25(Pt 2):306-315
pubmed: 29488907
Chem Sci. 2017 Oct 31;9(2):405-414
pubmed: 29629111
Chemistry. 2019 Jan 24;25(5):1152-1164
pubmed: 29882615
Phys Rev Lett. 2019 Feb 15;122(6):063001
pubmed: 30822093