Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers.
Anti-Bacterial Agents
/ chemical synthesis
Antineoplastic Agents
/ chemical synthesis
Cations
/ chemistry
Cell Line, Tumor
Cell Proliferation
/ drug effects
Gram-Negative Bacteria
/ drug effects
Gram-Positive Bacteria
/ drug effects
Humans
Light
Photosensitizing Agents
/ chemical synthesis
Porphyrins
/ chemical synthesis
Reactive Oxygen Species
/ metabolism
5,15-diarylporphyrins
Cationic porphyrins
Gram negative and Gram positive bacteria
Photodynamic therapy
Tumor cells
Journal
Journal of photochemistry and photobiology. B, Biology
ISSN: 1873-2682
Titre abrégé: J Photochem Photobiol B
Pays: Switzerland
ID NLM: 8804966
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
received:
20
11
2018
revised:
07
06
2019
accepted:
01
07
2019
pubmed:
10
7
2019
medline:
3
8
2019
entrez:
10
7
2019
Statut:
ppublish
Résumé
The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.
Identifiants
pubmed: 31288120
pii: S1011-1344(18)31319-8
doi: 10.1016/j.jphotobiol.2019.111548
pii:
doi:
Substances chimiques
Anti-Bacterial Agents
0
Antineoplastic Agents
0
Cations
0
Photosensitizing Agents
0
Porphyrins
0
Reactive Oxygen Species
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
111548Informations de copyright
Copyright © 2019 Elsevier B.V. All rights reserved.