Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery.
biosynthetic gene clusters
comparative metabolomics
genome mining
secondary metabolites
specialised metabolites
Journal
FEMS microbiology letters
ISSN: 1574-6968
Titre abrégé: FEMS Microbiol Lett
Pays: England
ID NLM: 7705721
Informations de publication
Date de publication:
01 07 2019
01 07 2019
Historique:
received:
24
04
2019
accepted:
19
07
2019
pubmed:
30
6
2019
medline:
17
6
2020
entrez:
29
6
2019
Statut:
ppublish
Résumé
Secondary metabolites can be viewed as a chemical language, facilitating communication between microorganisms. From an ecological point of view, this metabolite exchange is in constant flux due to evolutionary and environmental pressures. From a biomedical perspective, the chemistry is unsurpassed for its antibiotic properties. Genome sequencing of microorganisms has revealed a large reservoir of Biosynthetic Gene Clusters (BGCs); however, linking these to the secondary metabolites they encode is currently a major bottleneck to chemical discovery. This linking of genes to metabolites with experimental validation will aid the elicitation of silent or cryptic (not expressed under normal laboratory conditions) BGCs. As a result, this will accelerate chemical dereplication, our understanding of gene transcription and provide a comprehensive resource for synthetic biology. This will ultimately provide an improved understanding of both the biosynthetic and chemical space. In recent years, integrating these complex metabolomic and genomic data sets has been achieved using a spectrum of manual and automated approaches. In this review, we cover examples of these approaches, while addressing current challenges and future directions in linking these data sets.
Identifiants
pubmed: 31252431
pii: 5525086
doi: 10.1093/femsle/fnz142
pmc: PMC6697067
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R022054/1
Pays : United Kingdom
Informations de copyright
© FEMS 2019.
Références
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6
pubmed: 12563033
Genome Res. 2005 Oct;15(10):1325-35
pubmed: 16169927
Bioinformatics. 2006 Sep 1;22(17):2081-6
pubmed: 16837531
PLoS One. 2008 Sep 24;3(9):e3252
pubmed: 18813346
Curr Protoc Bioinformatics. 2008 Sep;Chapter 2:Unit 2.5
pubmed: 18819075
Fungal Genet Biol. 2010 Sep;47(9):736-41
pubmed: 20554054
Appl Environ Microbiol. 2010 Dec;76(24):8143-9
pubmed: 20952652
Microb Biotechnol. 2011 Mar;4(2):207-15
pubmed: 21342466
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
pubmed: 21672958
Nat Chem Biol. 2011 Oct 09;7(11):794-802
pubmed: 21983601
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2611-20
pubmed: 23798442
PLoS One. 2013 Dec 31;8(12):e84028
pubmed: 24391870
Nat Prod Rep. 2014 Jun;31(6):718-29
pubmed: 24801551
ACS Chem Biol. 2014 Jul 18;9(7):1545-51
pubmed: 24802639
Chem Biol. 2014 Jun 19;21(6):707-18
pubmed: 24816229
Cell. 2014 Jul 17;158(2):412-421
pubmed: 25036635
J Nat Prod. 2014 Aug 22;77(8):1902-9
pubmed: 25116163
PLoS Comput Biol. 2014 Sep 04;10(9):e1003822
pubmed: 25188327
Nat Chem Biol. 2014 Nov;10(11):963-8
pubmed: 25262415
Chem Biol. 2015 Apr 23;22(4):460-471
pubmed: 25865308
Front Microbiol. 2015 May 05;6:371
pubmed: 25999925
Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):798-811
pubmed: 26087412
Nat Rev Microbiol. 2015 Aug;13(8):509-23
pubmed: 26119570
Nat Chem Biol. 2015 Sep;11(9):625-31
pubmed: 26284661
Nat Commun. 2015 Sep 28;6:8421
pubmed: 26412281
Nucleic Acids Res. 2015 Nov 16;43(20):9645-62
pubmed: 26442528
ACS Cent Sci. 2016 Feb 24;2(2):99-108
pubmed: 27163034
Nat Commun. 2016 Jun 02;7:11605
pubmed: 27251447
Nat Prod Rep. 2016 Aug 27;33(8):1006-19
pubmed: 27438486
Nat Biotechnol. 2016 Aug 9;34(8):828-837
pubmed: 27504778
J Ind Microbiol Biotechnol. 2017 May;44(4-5):573-588
pubmed: 27520548
ACS Chem Biol. 2016 Dec 16;11(12):3452-3460
pubmed: 27809474
Lett Appl Microbiol. 2017 Feb;64(2):150-157
pubmed: 27813109
Nat Chem Biol. 2017 Jan;13(1):30-37
pubmed: 27820803
mSystems. 2016 May 3;1(3):
pubmed: 27822535
Nat Chem Biol. 2017 May;13(5):470-478
pubmed: 28244986
J Nat Prod. 2017 Mar 24;80(3):588-597
pubmed: 28335604
Brief Bioinform. 2018 Sep 28;19(5):1022-1034
pubmed: 28398567
Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41
pubmed: 28460038
Nucleic Acids Res. 2017 Jul 3;45(W1):W49-W54
pubmed: 28460067
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5601-5606
pubmed: 28461474
Bioinformatics. 2017 Oct 15;33(20):3202-3210
pubmed: 28633438
Metabolomics. 2016 Sep;12(9):null
pubmed: 28819353
Curr Opin Microbiol. 2017 Oct;39:136-142
pubmed: 29175703
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11121-E11130
pubmed: 29229817
ACS Chem Biol. 2018 Apr 20;13(4):1029-1037
pubmed: 29510029
Angew Chem Int Ed Engl. 2018 Jul 2;57(27):8184-8188
pubmed: 29797385
Angew Chem Int Ed Engl. 2018 Oct 26;57(44):14519-14523
pubmed: 30025185
Nat Microbiol. 2018 Aug;3(8):909-919
pubmed: 30038309
Mar Drugs. 2018 Jul 23;16(7):null
pubmed: 30041461
Front Microbiol. 2018 Jul 24;9:1660
pubmed: 30087666
J Nat Prod. 2018 Oct 26;81(10):2205-2211
pubmed: 30251851
Nat Commun. 2018 Oct 2;9(1):4035
pubmed: 30279420
Chem Sci. 2018 Aug 20;9(37):7311-7317
pubmed: 30294420
J Antibiot (Tokyo). 2019 Jan;72(1):1-7
pubmed: 30310179
ACS Chem Biol. 2019 Jan 18;14(1):88-98
pubmed: 30543288
Front Microbiol. 2018 Dec 19;9:3139
pubmed: 30619207
Nat Prod Rep. 2019 Jan 8;:null
pubmed: 30620035
Mar Drugs. 2019 Jan 21;17(1):null
pubmed: 30669697
Chem Sci. 2018 Oct 19;10(2):453-463
pubmed: 30746093
Mar Drugs. 2019 Feb 21;17(2):null
pubmed: 30795576