A new 4-(pyridinyl)-4H-benzo[g]chromene-5,10-dione ruthenium(II) complex inducing senescence in 518A2 melanoma cells.
Anticancer agents
Lawsone
Melanoma
Naphthoquinone
Ruthenium(II) complex
Senescence
Journal
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
ISSN: 1432-1327
Titre abrégé: J Biol Inorg Chem
Pays: Germany
ID NLM: 9616326
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
02
05
2019
accepted:
06
06
2019
pubmed:
21
6
2019
medline:
14
7
2020
entrez:
21
6
2019
Statut:
ppublish
Résumé
2-Amino-5,10-dihydro-5,10-dioxo-4(pyridine-3-yl)-4H-benzo[g]chromene-3-carbonitrile 5, a cytotoxic lawsone derivative, was reacted with [Ru(p-cymene)Cl
Identifiants
pubmed: 31218441
doi: 10.1007/s00775-019-01677-y
pii: 10.1007/s00775-019-01677-y
doi:
Substances chimiques
Antineoplastic Agents
0
Coordination Complexes
0
DNA, Circular
0
Reactive Oxygen Species
0
Ruthenium
7UI0TKC3U5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
647-657Subventions
Organisme : Czech Science Foundation
ID : 17-05302S
Pays : International
Organisme : Deutsche Forschungsgemeinschaft
ID : Scho 402/12
Pays : International
Références
Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Bastholt L et al (2016) Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—update 2016. Eur J Cancer 63:201–217
doi: 10.1016/j.ejca.2016.05.005
pubmed: 27367293
Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S (2018) Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev 2:CD011123
pubmed: 29405038
Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9
doi: 10.1007/s00280-010-1293-1
pubmed: 20213076
pmcid: 4020437
Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727
doi: 10.1158/1078-0432.CCR-03-0746
pubmed: 15173078
Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W et al (2008) KP1019 a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155
doi: 10.1002/cbdv.200890195
pubmed: 18972504
Burris HA, Bakewell S, Bendell JC, Infante J, Jones SF, Spigel DR et al (2016) Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: a first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open 1:e000154
doi: 10.1136/esmoopen-2016-000154
pubmed: 28848672
Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Metals Rev 45:62–69
Biersack B (2016) Anticancer activity and modes of action of (arene) ruthenium(II) complexes coordinated to C-, N-, and O-ligands. Mini Rev Med Chem 16:804–814
doi: 10.2174/138955751610160503004623
pubmed: 27161009
Pettinari R, Petrini A, Marchetti F, Pettinari C, Riedel T, Therrien B et al (2017) Arene-ruthenium(II) complexes with bioactive ortho-hydroxydibenzoylmethane ligands: synthesis, structure, and cytotoxicity. Eur J Inorg Chem 12:1800–1806
doi: 10.1002/ejic.201601164
Schmitt F, Kasparkova J, Brabec V, Begemann G, Schobert R, Biersack B (2018) New (arene)ruthenium(II) complexes of 4-aryl-4H-naphthopyrans with anticancer and anti-vascular activities. J Inorg Biochem 184:69–78
doi: 10.1016/j.jinorgbio.2018.03.013
pubmed: 29684697
Thota S, Rodrigues DA, Crans DC, Barreiro EJ (2018) Ru(II) compounds: next-generation anticancer metallotherapeutics? J Med Chem 61:5805–5821
doi: 10.1021/acs.jmedchem.7b01689
pubmed: 29446940
Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrophostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975
doi: 10.1016/j.ejmech.2010.01.040
pubmed: 20149940
Pradhan R, Dandawate P, Vyas A, Padhye S, Biersack B, Schobert R et al (2012) From body art to anticancer activities: perspectives on medical properties of henna. Curr Drug Target 13:1777–1798
doi: 10.2174/138945012804545588
Nadkarni KM (1908) Indian plants and drugs, 1st edn. Nortan & Co., Madras
Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK (2014) β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 5:e1230
doi: 10.1038/cddis.2014.202
pubmed: 24832602
pmcid: 4047891
Magedov IV, Kireev AS, Jenkins AR, Evdokimov NM, Lima DT, Tongwa P et al (2012) Structural simplification of bioactive natural products with multicomponent synthesis. 4H-pyrano-[2,3-b]naphthoquinones with anticancer activity. Bioorg Med Chem Lett 22:5195–5198
doi: 10.1016/j.bmcl.2012.06.073
pubmed: 22819765
Benimetskaya L, Ayyanar K, Kornblum N, Castanotto D, Rossi J, Wu S et al (2006) Bcl-2 protein in 518A2 melanoma cells in vivo and in vitro. Clin Cancer Res 12:4940–4948
doi: 10.1158/1078-0432.CCR-06-1002
pubmed: 16914583
Zerp SF, Van Elsas A, Peltenburg LTC, Schrier PI (1999) p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer 79:921–926
doi: 10.1038/sj.bjc.6690147
pubmed: 10070891
pmcid: 2362648
Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Update 9:111–122
doi: 10.1016/j.drup.2006.05.002
Intini FP, Zajac J, Novohradsky V, Saltarella T, Pacifico C et al (2017) Novel antitumor platinum(II) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: synthesis and dual mechanism of antiproliferative effects. Inorg Chem 56:1483–1497
doi: 10.1021/acs.inorgchem.6b02553
pubmed: 28102676
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162
doi: 10.1371/journal.pone.0081162
pubmed: 24260552
pmcid: 3834214
Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer 226:115–121
Park EJ, Choi KS, Kwon TK (2011) β-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chem Biol Interact 189:37–44
doi: 10.1016/j.cbi.2010.10.013
pubmed: 21035436
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621
doi: 10.1016/0014-4827(61)90192-6
pubmed: 13905658
pmcid: 13905658
Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10
doi: 10.1023/B:BGEN.0000017682.96395.10
pubmed: 15138376
Debacq-Chainiaux F, Ameur RB, Bauwens E, Dumortier E, Toutfaire M, Toussaint O (2016) Stress-induced (premature) senescence. In: Rattan S, Hayflick L (eds) Cellular ageing and replicative senescence. Healthy Ageing and longevity, 4th edn. Springer, Cham, pp 243–262
Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603
doi: 10.1038/nrc1412
pubmed: 15286739
Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304
doi: 10.1080/15384101.2014.1000134
pubmed: 25564883
pmcid: 4353294
Sikora E, Mosieniak G, Sliwinska MA (2016) Morphological and functional characteristics of senescent cells. Curr Drug Targets 17:377–387
doi: 10.2174/1389450116666151019094724
pubmed: 26477465
Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622
pubmed: 11017877
Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson J (2016) Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe—a systematic review of the literature. Clin Epidemiol 8:109–122
doi: 10.2147/CLEP.S99021
pubmed: 27307765
pmcid: 4887072
Toussaint O, Royer V, Salmon M, Remacle J (2002) Stress-induced premature senescence and tissue ageing. Biochem Pharmacol 64:1007–1009
doi: 10.1016/S0006-2952(02)01170-X
pubmed: 12213599
Berns A (2002) Senescence: a companion in chemotherapy? Cancer Cell 1:309–311
doi: 10.1016/S1535-6108(02)00063-6
pubmed: 12086843
te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883
Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al (1999) A senescent-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767
pubmed: 10446993
Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Update 4:303–313
doi: 10.1054/drup.2001.0213
Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341
doi: 10.1073/pnas.92.10.4337
pubmed: 7753808
Ewald JA, Desotelle JA, Wilding G, Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102:1536–1546
doi: 10.1093/jnci/djq364
pubmed: 20858887
pmcid: 2957429
Nardella C, Clohessy JG, Alimonti A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11:503–511
doi: 10.1038/nrc3057
Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346
doi: 10.1016/S0092-8674(02)00734-1
pubmed: 12015983
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660
doi: 10.1038/nature05529
pubmed: 17251933
pmcid: 4601097
Martin L, Schilder RJ (2006) Novel non-cytotoxic therapy in ovarian cancer: current status and future prospects. J Natl Comp Cancer Netw 4:955–966
doi: 10.6004/jnccn.2006.0079
Winquist E, Waldron T, Berry S, Ernst DS, Hotte S, Lukka H (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systemic review from the cancer care Ontario program in evidence-based care’s genitourinary cancer disease site group. BMC Cancer 6:112
doi: 10.1186/1471-2407-6-112
pubmed: 16670021
pmcid: 1550253
Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118
doi: 10.1146/annurev-pathol-121808-102144
pubmed: 4166495
pmcid: 4166495
Lee M, Lee JS (2014) Exploiting tumor cell senescence in anticancer therapy. BMB Rep 47:51–59
doi: 10.5483/BMBRep.2014.47.2.005
pubmed: 24411464
pmcid: 4163898
Freund A, Orjalo V, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246
doi: 10.1016/j.molmed.2010.03.003
pubmed: 20444648
pmcid: 2879478
Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151
doi: 10.1038/sj.onc.1206454
pubmed: 12789290
Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634
doi: 10.1038/onc.2008.258
pubmed: 18679422
Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al (2006) Cellular Senescence in Naevi and immortalization in melanoma: a role for p16? Br J Cancer 95:496–505
doi: 10.1038/sj.bjc.6603283
pubmed: 16880792
pmcid: 2360676
Michaloglou C, Vredeveld L, Soengas M, Denoyelle C, Kuilman T, van der Horst C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724
doi: 10.1038/nature03890
pubmed: 16079850
pmcid: 16079850
Mhaidat NM, Zhang XD, Allen J, Avery-Kiejda KA, Scott RJ, Hersey P (2007) Temozolomide induces senescence but not apoptosis in human melanoma cells. Br J Cancer 97:1225–1233
doi: 10.1038/sj.bjc.6604017
pubmed: 17968428
pmcid: 2360470