Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium.


Journal

Journal of virology
ISSN: 1098-5514
Titre abrégé: J Virol
Pays: United States
ID NLM: 0113724

Informations de publication

Date de publication:
01 09 2019
Historique:
received: 11 01 2019
accepted: 02 06 2019
pubmed: 14 6 2019
medline: 3 6 2020
entrez: 14 6 2019
Statut: epublish

Résumé

Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment.

Identifiants

pubmed: 31189708
pii: JVI.00058-19
doi: 10.1128/JVI.00058-19
pmc: PMC6694820
pii:
doi:

Substances chimiques

Viral Proteins 0
NA protein, influenza A virus EC 3.2.1.18
Neuraminidase EC 3.2.1.18

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200187/Z/15/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT105736MA
Pays : United Kingdom

Informations de copyright

Copyright © 2019 Singanayagam et al.

Références

Nature. 2006 Mar 23;440(7083):435-6
pubmed: 16554799
Virology. 2008 Jan 20;370(2):403-14
pubmed: 17936324
J Virol. 2008 Dec;82(23):11599-608
pubmed: 18829764
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17736-41
pubmed: 19004788
Antiviral Res. 2009 Feb;81(2):132-40
pubmed: 19028526
J Virol. 2010 Feb;84(3):1527-35
pubmed: 19923184
J Virol. 2010 May;84(9):4277-88
pubmed: 20181685
J Virol. 2010 Sep;84(17):8607-16
pubmed: 20592084
Br J Pharmacol. 2011 Sep;164(2):344-57
pubmed: 21418188
Science. 2011 May 13;332(6031):816-21
pubmed: 21566186
J Biol Chem. 2011 Dec 9;286(49):42141-9
pubmed: 21994935
J Virol. 2012 Feb;86(3):1405-10
pubmed: 22090129
PLoS Pathog. 2011 Dec;7(12):e1002398
pubmed: 22144894
Nature. 2012 May 02;486(7403):420-8
pubmed: 22722205
Science. 2012 Jun 22;336(6088):1534-41
pubmed: 22723413
J Virol. 2013 Apr;87(7):3741-51
pubmed: 23325689
J Virol. 2013 May;87(9):4826-34
pubmed: 23449784
PLoS Pathog. 2013 Feb;9(2):e1003151
pubmed: 23459660
Med Res Rev. 2014 Mar;34(2):301-39
pubmed: 23801557
Antiviral Res. 2013 Sep;99(3):371-82
pubmed: 23820269
J Virol. 2013 Sep;87(17):9911-22
pubmed: 23824818
J Virol. 2014 Feb;88(3):1447-60
pubmed: 24198411
PLoS Pathog. 2014 Jan;10(1):e1003831
pubmed: 24391498
Cell. 2014 Apr 10;157(2):329-339
pubmed: 24725402
Cell Host Microbe. 2014 May 14;15(5):644-51
pubmed: 24832457
Curr Top Microbiol Immunol. 2014;385:119-36
pubmed: 25085014
J Virol. 2014 Nov;88(22):13269-83
pubmed: 25210166
PLoS One. 2014 Nov 12;9(11):e112302
pubmed: 25391151
Bioessays. 2015 Feb;37(2):204-12
pubmed: 25546511
J Virol. 2015 Apr;89(8):4504-16
pubmed: 25653452
J Clin Invest. 2015 Mar 2;125(3):1255-68
pubmed: 25689254
J Immunol. 2015 Jun 15;194(12):6144-54
pubmed: 25934861
ACS Infect Dis. 2015 Feb 13;1(2):98-109
pubmed: 25984567
J Virol. 2015 Nov 25;90(3):1569-77
pubmed: 26608319
Nature. 2016 Jan 7;529(7584):101-4
pubmed: 26738596
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1636-41
pubmed: 26811446
PLoS Pathog. 2016 Feb 04;12(2):e1005409
pubmed: 26845438
PLoS Pathog. 2016 Jun 28;12(6):e1005702
pubmed: 27351973
J Virol. 2017 Jan 3;91(2):
pubmed: 27807237
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):206-214
pubmed: 28003465
Emerg Microbes Infect. 2017 Mar 22;6(3):e11
pubmed: 28325922
J Virol. 2017 May 12;91(11):
pubmed: 28356532
Curr Opin Virol. 2017 Jun;24:60-69
pubmed: 28527859
Lancet Infect Dis. 2018 Jan;18(1):e25-e32
pubmed: 28780285
Science. 2017 Oct 27;358(6362):496-502
pubmed: 28971971
Sci Rep. 2017 Nov 6;7(1):14614
pubmed: 29097696
mSphere. 2018 Jan 3;3(1):null
pubmed: 29299534
Nat Struct Mol Biol. 2018 Feb;25(2):115-121
pubmed: 29396418
J Virol. 2018 May 29;92(12):
pubmed: 29593038
Nat Commun. 2018 Apr 11;9(1):1386
pubmed: 29643370
Trends Microbiol. 2018 Oct;26(10):841-853
pubmed: 29681430
Vaccine. 2018 May 31;36(23):3199-3207
pubmed: 29716771
Sci Rep. 2018 Jul 11;8(1):10432
pubmed: 29992986
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8276-E8285
pubmed: 30104379
J Clin Virol. 2018 Nov;108:105-111
pubmed: 30292135
J Virol. 2018 Dec 10;93(1):null
pubmed: 30305359
J Virol. 1993 May;67(5):2552-8
pubmed: 7682624
J Cell Biol. 1994 Oct;127(1):39-53
pubmed: 7929569
J Virol. 1993 Apr;67(4):1761-4
pubmed: 8445709
Antiviral Res. 1995 Aug;27(4):425-30
pubmed: 8540761
Virus Res. 1996 Oct;44(2):79-95
pubmed: 8879138
J Virol. 1997 Nov;71(11):8808-20
pubmed: 9343241
Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306-13
pubmed: 9405608
J Cell Physiol. 1998 Jul;176(1):216-22
pubmed: 9618161

Auteurs

Anika Singanayagam (A)

Department of Medicine, Imperial College, London, United Kingdom.

Maria Zambon (M)

Public Health England, Colindale, United Kingdom.

Wendy S Barclay (WS)

Department of Medicine, Imperial College, London, United Kingdom w.barclay@imperial.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH