PGAM5 is a key driver of mitochondrial dysfunction in experimental lung fibrosis.
A549 Cells
Animals
Bleomycin
/ pharmacology
Disease Models, Animal
Gene Editing
Humans
Membrane Potential, Mitochondrial
/ drug effects
Mice
Mice, Knockout
Microtubule-Associated Proteins
/ metabolism
Mitochondria
/ drug effects
Mitophagy
/ drug effects
Phosphoprotein Phosphatases
/ genetics
Protein Kinases
/ metabolism
Pulmonary Fibrosis
/ metabolism
Reactive Oxygen Species
/ metabolism
Bleomycin
IPF
Mitophagy
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
08
01
2019
accepted:
06
05
2019
pubmed:
7
6
2019
medline:
26
11
2019
entrez:
7
6
2019
Statut:
ppublish
Résumé
Mitochondrial homeostasis has recently emerged as a focal point in the pathophysiology of idiopathic pulmonary fibrosis (IPF), but conflicting data have been reported regarding its regulation. We speculated that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein at the intersection of multiple cell death and mitochondrial turnover pathways, might be involved in the pathogenesis of IPF. PGAM5-deficient mice and human pulmonary epithelial cells were analyzed comparatively with PGAM5-proficient controls in a bleomycin-based model of pulmonary fibrogenesis. Mitochondria were visualized by confocal and transmission electron microscopy. Mitochondrial homeostasis was assessed using JC1 (ΔΨ) and flow cytometry. PGAM5 plays an important role in pulmonary fibrogenesis. Pgam5-/- mice displayed significantly attenuated lung fibrosis compared to controls. Complementary, in vitro studies demonstrated that PGAM5 impaired mitochondrial integrity on a functional and structural level independently of mtROS-production. On a molecular level, reduced mitophagy caused by PGAM5 deficiency improved mitochondrial homeostasis. Our study identifies PGAM5 as an important regulator of mitochondrial homeostasis in pulmonary fibrosis. Our data further indicate PGAM5-mediated mitophagy itself as a pivotal gateway event in the mediation of self-sustaining mitochondrial damage and membrane depolarization. Our work hereby highlights the importance of mitochondrial dynamics and identifies a potential therapeutic target that warrants further studies. Toxic agents lead to mitochondrial damage resulting in depolarization of the mitochondrial membrane potential (ΔΨ) which is a gateway event for the initiation of PGAM5-mediated mitophagy. PGAM5-mediated mitophagy in turn leads to a self-perpetuating escalation of ΔΨ depolarization. Loss of the mitophagy-based damage-enhancing loop under PGAM5-deficient conditions breaks this vicious cycle, leading to improved mitochondrial homeostasis.
Identifiants
pubmed: 31168659
doi: 10.1007/s00018-019-03133-1
pii: 10.1007/s00018-019-03133-1
doi:
Substances chimiques
MAP1LC3A protein, human
0
MAP1LC3B protein, human
0
Microtubule-Associated Proteins
0
Reactive Oxygen Species
0
Bleomycin
11056-06-7
Protein Kinases
EC 2.7.-
PTEN-induced putative kinase
EC 2.7.11.1
Phosphoprotein Phosphatases
EC 3.1.3.16
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4783-4794Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : BE3686/2
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : FOR2438
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : SFB1181
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : SFB796
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : SPP1656
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : KFO257
Organisme : Interdisciplinary Center for Clinical Research (IZKF) Erlangen
ID : Forschungsrotation
Organisme : Interdisciplinary Center for Clinical Research (IZKF) Erlangen
ID : Project A75
Références
Nat Cell Biol. 2018 Mar;20(3):272-284
pubmed: 29459781
J Clin Pathol. 1988 Apr;41(4):467-70
pubmed: 3366935
Am J Respir Cell Mol Biol. 2011 May;44(5):725-38
pubmed: 21531958
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5
pubmed: 21646527
Am J Respir Crit Care Med. 2001 Oct 1;164(7):1171-81
pubmed: 11673205
J Clin Invest. 2015 Feb;125(2):521-38
pubmed: 25562319
Autophagy. 2011 Oct;7(10):1251-3
pubmed: 21743300
J Immunol. 2016 Jan 1;196(1):407-15
pubmed: 26582950
Toxicol Lett. 2018 Mar 1;284:120-128
pubmed: 29241732
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Free Radic Biol Med. 2016 Dec;101:482-490
pubmed: 27840320
Redox Biol. 2015;4:215-25
pubmed: 25617802
Gut. 2017 Apr;66(4):716-723
pubmed: 27566130
PLoS One. 2015 Mar 18;10(3):e0121246
pubmed: 25785991
J Clin Invest. 2014 Sep;124(9):3987-4003
pubmed: 25083992
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L433-52
pubmed: 27402690
Nat Protoc. 2007;2(2):287-95
pubmed: 17406588
N Engl J Med. 2013 Feb 14;368(7):651-62
pubmed: 23406030
PLoS One. 2016 Jan 25;11(1):e0147792
pubmed: 26807733
J Clin Invest. 2016 Mar 1;126(3):809-20
pubmed: 26928034
Nat Immunol. 2018 Feb;19(2):130-140
pubmed: 29255269
Nat Commun. 2014 Sep 15;5:4930
pubmed: 25222142
Immunity. 2016 Mar 15;44(3):582-596
pubmed: 26921108