Bat sonar and wing morphology predict species vertical niche.


Journal

The Journal of the Acoustical Society of America
ISSN: 1520-8524
Titre abrégé: J Acoust Soc Am
Pays: United States
ID NLM: 7503051

Informations de publication

Date de publication:
05 2019
Historique:
entrez: 3 6 2019
pubmed: 4 6 2019
medline: 1 9 2020
Statut: ppublish

Résumé

The use of echolocation allows insectivorous bats to access unique foraging niches by locating obstacles and prey with ultrasounds in complete darkness. To avoid interspecific competition, it is likely that sonar features and wing morphology co-evolved with species vertical distribution, but due to the technical difficulties of studying flight in the vertical dimension, this has never been demonstrated with empirical measurements. The authors equipped 48 wind masts with arrays of two microphones and located the vertical distribution of a community of 19 bat species and two species groups over their annual activity period (>8000 nights). The authors tested the correlation between the proportion of flights at height and the acoustic features of bat calls as well as their wing morphology. The authors found that call peak frequency and bandwidth are good predictors of bat use of the vertical space regardless of their acoustic strategies (i.e., gleaning, hawking, or detecting prey flutter). High wing aspect ratios and high wing loadings were associated with high proportions of time spent at height, confirming hypotheses from the literature.

Identifiants

pubmed: 31153342
doi: 10.1121/1.5102166
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3242

Auteurs

Charlotte Roemer (C)

Biotope, 22 bd Maréchal Foch, Mèze, France.

Aurélie Coulon (A)

Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier 75005 Paris, France.

Thierry Disca (T)

Biotope, 22 bd Maréchal Foch, Mèze, France.

Yves Bas (Y)

Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier 75005 Paris, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH