Infection Outcomes are Robust to Thermal Variability in a Bumble Bee Host-Parasite System.
Journal
Integrative and comparative biology
ISSN: 1557-7023
Titre abrégé: Integr Comp Biol
Pays: England
ID NLM: 101152341
Informations de publication
Date de publication:
01 10 2019
01 10 2019
Historique:
pubmed:
9
5
2019
medline:
11
2
2020
entrez:
9
5
2019
Statut:
ppublish
Résumé
Climate change-related increases in thermal variability and rapid temperature shifts will affect organisms in multiple ways, including imposing physiological stress. Furthermore, the effects of temperature may alter the outcome of biotic interactions, such as those with pathogens and parasites. In the context of host-parasite interactions, the beneficial acclimation hypothesis posits that shifts away from acclimation or optimum performance temperatures will impose physiological stress on hosts and will affect their ability to resist parasite infection. We investigated the beneficial acclimation hypothesis in a bumble bee-trypanosome parasite system. Freshly emerged adult worker bumble bees, Bombus impatiens, were acclimated to 21, 26, or 29°C. They were subsequently experimentally exposed to the parasite, Crithidia bombi, and placed in a performance temperature that was the same as the acclimation temperature (constant) or one of the other temperatures (mismatched). Prevalence of parasite transmission was checked 4 and 6 days post-parasite exposure, and infection intensity in the gut was quantified at 8 days post-exposure. Parasite strain, host colony, and host size had significant effects on transmission prevalence and infection load. However, neither transmission nor infection intensity were significantly different between constant and mismatched thermal regimes. Furthermore, acclimation temperature, performance temperature, and the interaction of acclimation and performance temperatures had no significant effects on infection outcomes. These results, counter to predictions of the beneficial acclimation hypothesis, suggest that infection outcomes in this host-parasite system are robust to thermal variation within typically experienced ranges. This could be a consequence of adaptation to commonly experienced natural thermal regimes or a result of individual and colony level heterothermy in bumble bees. However, thermal variability may still have a detrimental effect on more sensitive stages or species, or when extreme climatic events push temperatures outside of the normally experienced range.
Identifiants
pubmed: 31065666
pii: 5486595
doi: 10.1093/icb/icz031
pmc: PMC6797908
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1103-1113Subventions
Organisme : NIGMS NIH HHS
ID : R15 GM129681
Pays : United States
Informations de copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Références
Oecologia. 2007 Nov;154(2):411-21
pubmed: 17713789
PeerJ. 2018 Jul 2;6:e5046
pubmed: 30002955
J Anim Ecol. 2014 Jul;83(4):838-49
pubmed: 24219180
Parasitology. 2006 Dec;133(Pt 6):749-61
pubmed: 16948877
Curr Opin Insect Sci. 2017 Aug;22:101-108
pubmed: 28805631
Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1917-21
pubmed: 8127906
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72
pubmed: 18458348
Ecol Lett. 2018 Sep;21(9):1425-1439
pubmed: 30009486
Science. 2015 Mar 27;347(6229):1255957
pubmed: 25721506
J Insect Physiol. 2016 Oct - Nov;93-94:36-41
pubmed: 27530304
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):662-7
pubmed: 21199943
Sci Rep. 2018 Feb 1;8(1):2074
pubmed: 29391545
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11484-9
pubmed: 26324927
PeerJ. 2016 Aug 09;4:e2249
pubmed: 27602260
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3496-501
pubmed: 24550506
Science. 2013 Aug 2;341(6145):514-9
pubmed: 23908230
Sci Rep. 2017 Aug 24;7(1):9349
pubmed: 28839273
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):744-749
pubmed: 29311324
J Evol Biol. 2011 Feb;24(2):354-62
pubmed: 21091570
PLoS One. 2012;7(11):e49046
pubmed: 23155449
Oecologia. 1996 Mar;107(1):71-78
pubmed: 28307193
Parasite Immunol. 2013 Nov;35(11):339-49
pubmed: 23758554
Ecol Lett. 2007 May;10(5):375-82
pubmed: 17498136
PLoS Pathog. 2018 Oct 19;14(10):e1007185
pubmed: 30339695
Trends Ecol Evol. 2010 Jun;25(6):345-53
pubmed: 20188434
Ecol Lett. 2017 Feb;20(2):184-193
pubmed: 28111904
Proc Biol Sci. 2014 Jan 29;281(1779):20132612
pubmed: 24478296
Curr Opin Insect Sci. 2016 Oct;17:55-61
pubmed: 27720074
Science. 2008 Oct 31;322(5902):690-2
pubmed: 18974339
J Therm Biol. 2016 Jul;59:52-7
pubmed: 27264888
Science. 2000 Sep 22;289(5487):2068-74
pubmed: 11000103
Science. 2015 Jul 10;349(6244):177-80
pubmed: 26160945
Science. 2015 Sep 25;349(6255):1541-4
pubmed: 26404836
Science. 2004 Aug 13;305(5686):994-7
pubmed: 15310900
Evolution. 2011 Oct;65(10):2995-3001
pubmed: 21967438
J Exp Biol. 2018 Apr 19;221(Pt 8):
pubmed: 29530975
Parasitology. 2005 Jun;130(Pt 6):637-42
pubmed: 15977900
J Anim Ecol. 2016 Jul;85(4):1014-24
pubmed: 27040618
J Exp Biol. 1976 Jun;64(3):561-85
pubmed: 945321
Trends Parasitol. 2014 Mar;30(3):115-22
pubmed: 24513566
J Insect Physiol. 2008 Jan;54(1):297-308
pubmed: 17981291
Conserv Biol. 2013 Aug;27(4):741-51
pubmed: 23773091
Parasitology. 2006 Jan;132(Pt 1):143-51
pubmed: 16393363
Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):null
pubmed: 28483865
Zoology (Jena). 2018 Apr;127:95-105
pubmed: 29496379
Proc Biol Sci. 2015 Feb 22;282(1801):20142039
pubmed: 25567647