A comparison of the association between large haplotype blocks under selection and the presence/absence of inversions.
adaptation
haplotypes
inversion
Journal
Ecology and evolution
ISSN: 2045-7758
Titre abrégé: Ecol Evol
Pays: England
ID NLM: 101566408
Informations de publication
Date de publication:
Apr 2019
Apr 2019
Historique:
received:
22
01
2019
revised:
26
02
2019
accepted:
04
03
2019
entrez:
30
4
2019
pubmed:
30
4
2019
medline:
30
4
2019
Statut:
epublish
Résumé
Inversions may contribute to ecological adaptation and phenotypic diversity, and with the advent of "second" and "third" generation sequencing technologies, the ability to detect inversion polymorphisms has been enhanced dramatically. A key molecular consequence of an inversion is the suppression of recombination allowing independent accumulation of genetic changes between alleles over time. This may lead to the development of divergent haplotype blocks maintained by balancing selection. Thus, divergent haplotype blocks are often considered as indicating the presence of an inversion. In this paper, we first review the features of a 7.7 Mb inversion causing the Rose-comb phenotype in chicken, as a model for how inversions evolve and directly affect phenotypes. Second, we compare the genetic basis for alternative mating strategies in ruff and timing of reproduction in Atlantic herring, both associated with divergent haplotype blocks. Alternative male mating strategies in ruff are associated with a 4.5 Mb inversion that occurred about 4 million years ago. In fact, the ruff inversion shares some striking features with the Rose-comb inversion such as disruption of a gene at one of the inversion breakpoints and generation of a new allele by recombination between the inverted and noninverted alleles. In contrast, inversions do not appear to be a major reason for the fairly large haplotype blocks (range 10-200 kb) associated with ecological adaptation in the herring. Thus, it is important to note that divergent haplotypes may also be maintained by natural selection in the absence of structural variation.
Identifiants
pubmed: 31031951
doi: 10.1002/ece3.5094
pii: ECE35094
pmc: PMC6476765
doi:
Types de publication
Journal Article
Langues
eng
Pagination
4888-4896Déclaration de conflit d'intérêts
None declared.
Références
Genome Res. 1998 Aug;8(8):826-33
pubmed: 9724328
Ecol Evol. 2019 Mar 27;9(8):4888-4896
pubmed: 31031951
Genome Biol. 2016 Nov 25;17(1):239
pubmed: 27887629
PLoS Genet. 2015 Mar 19;11(3):e1004947
pubmed: 25789773
Science. 1933 Dec 22;78(2034):585-6
pubmed: 17801695
Curr Biol. 2008 Aug 5;18(15):1147-52
pubmed: 18674911
Nature. 2011 Aug 14;477(7363):203-6
pubmed: 21841803
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7
pubmed: 15256591
Nat Genet. 2016 Jan;48(1):84-8
pubmed: 26569123
Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89
pubmed: 26542840
Nature. 2015 Feb 19;518(7539):371-5
pubmed: 25686609
Genome Biol Evol. 2016 Apr 11;8(4):1012-22
pubmed: 26983822
PLoS One. 2013 Apr 23;8(4):e61292
pubmed: 23637806
Elife. 2016 May 03;5:
pubmed: 27138043
Genome Med. 2010 Feb 12;2(2):11
pubmed: 20156332
Genetics. 2012 Sep;192(1):131-7
pubmed: 22673805
Genet Med. 2018 Jan;20(1):159-163
pubmed: 28640241
Nat Methods. 2018 Jun;15(6):461-468
pubmed: 29713083
PLoS Biol. 2010 Sep 28;8(9):
pubmed: 20927412
Trends Ecol Evol. 2018 Jun;33(6):427-440
pubmed: 29731154
Mol Biol Evol. 2011 Jan;28(1):745-58
pubmed: 20837604
Heredity (Edinb). 2011 Apr;106(4):537-46
pubmed: 20571514
Am J Hum Genet. 2017 Jun 1;100(6):854-864
pubmed: 28552195
Brief Funct Genomics. 2015 Sep;14(5):305-14
pubmed: 25877305
Mol Ecol. 2016 May;25(10):2130-43
pubmed: 26923504
Am J Hum Genet. 1998 Jul;63(1):218-24
pubmed: 9634501
PLoS Genet. 2012 Jun;8(6):e1002775
pubmed: 22761584
Curr Opin Genet Dev. 2013 Jun;23(3):295-301
pubmed: 23601626
Methods. 2012 Nov;58(3):268-76
pubmed: 22652625
PLoS Genet. 2017 Apr 7;13(4):e1006665
pubmed: 28388616
Curr Biol. 2018 Jun 4;28(11):1839-1845.e3
pubmed: 29804810
PLoS Genet. 2018 Jul 30;14(7):e1007526
pubmed: 30059505
Science. 2016 Apr 22;352(6284):470-4
pubmed: 27102486
Sci Rep. 2016 Mar 17;6:23246
pubmed: 26983361
Annu Rev Ecol Evol Syst. 2008 Dec 1;39:21-42
pubmed: 20419035
Brief Funct Genomics. 2015 Sep;14(5):369-79
pubmed: 25998059
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3452-E3461
pubmed: 28389569
Proc Natl Acad Sci U S A. 1921 Aug;7(8):235-7
pubmed: 16576597
Nat Cell Biol. 2006 May;8(5):458-69
pubmed: 16622419
Nature. 2008 Mar 20;452(7185):317-22
pubmed: 18354476
PLoS Genet. 2009 Jan;5(1):e1000341
pubmed: 19148282
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18238-42
pubmed: 19015516
Hum Mol Genet. 2009 Jul 15;18(14):2555-66
pubmed: 19383631
PLoS Genet. 2009 Jun;5(6):e1000512
pubmed: 19521496
Nat Genet. 2016 Jan;48(1):79-83
pubmed: 26569125
Genet Res. 1974 Feb;23(1):23-35
pubmed: 4407212
Genetics. 1938 Jan;23(1):28-64
pubmed: 17246876
Curr Protoc Bioinformatics. 2014;45:15.6.1-11
pubmed: 25152801