Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity.
bone microstructure
elasticity
homogenization
resonant ultrasound spectroscopy
Journal
Journal of the Royal Society, Interface
ISSN: 1742-5662
Titre abrégé: J R Soc Interface
Pays: England
ID NLM: 101217269
Informations de publication
Date de publication:
28 02 2019
28 02 2019
Historique:
entrez:
9
4
2019
pubmed:
9
4
2019
medline:
5
3
2020
Statut:
ppublish
Résumé
With ageing and various diseases, the vascular pore volume fraction (porosity) in cortical bone increases, and the morphology of the pore network is altered. Cortical bone elasticity is known to decrease with increasing porosity, but the effect of the microstructure is largely unknown, while it has been thoroughly studied for trabecular bone. Also, popular micromechanical models have disregarded several micro-architectural features, idealizing pores as cylinders aligned with the axis of the diaphysis. The aim of this paper is to quantify the relative effects on cortical bone anisotropic elasticity of porosity and other descriptors of the pore network micro-architecture associated with pore number, size and shape. The five stiffness constants of bone assumed to be a transversely isotropic material were measured with resonant ultrasound spectroscopy in 55 specimens from the femoral diaphysis of 29 donors. The pore network, imaged with synchrotron radiation X-ray micro-computed tomography, was used to derive the pore descriptors and to build a homogenization model using the fast Fourier transform (FFT) method. The model was calibrated using experimental elasticity. A detailed analysis of the computed effective elasticity revealed in particular that porosity explains most of the variations of the five stiffness constants and that the effects of other micro-architectural features are small compared to usual experimental errors. We also have evidence that modelling the pore network as an ensemble of cylinders yields biased elasticity values compared to predictions based on the real micro-architecture. The FFT homogenization method is shown to be particularly efficient to model cortical bone.
Identifiants
pubmed: 30958180
doi: 10.1098/rsif.2018.0911
pmc: PMC6408344
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20180911Références
Biomech Model Mechanobiol. 2012 Jul;11(6):883-901
pubmed: 22109098
J Biomech. 1996 Dec;29(12):1653-7
pubmed: 8945668
Phys Med Biol. 2006 Feb 7;51(3):733-46
pubmed: 16424592
Bone. 2007 Apr;40(4):957-65
pubmed: 17223618
Curr Osteoporos Rep. 2016 Oct;14(5):187-98
pubmed: 27623679
J Biomech. 2004 Aug;37(8):1281-7
pubmed: 15212934
Bone. 1997 Apr;20(4):315-28
pubmed: 9108351
J Mech Behav Biomed Mater. 2017 Aug;72:241-245
pubmed: 28501721
J Biomech. 2015 Mar 18;48(5):832-41
pubmed: 25553670
Int J Numer Method Biomed Eng. 2017 Nov;33(11):
pubmed: 28268244
J Mech Behav Biomed Mater. 2016 Oct;63:164-173
pubmed: 27389322
J Acoust Soc Am. 2017 Nov;142(5):2755
pubmed: 29195417
J Biomech. 2012 Nov 15;45(16):2743-9
pubmed: 23058867
Pathol Biol (Paris). 2005 Dec;53(10):576-80
pubmed: 16364809
J Biomech. 1975 Jan;8(1):81-6
pubmed: 1126977
J Biomech. 1999 Jul;32(7):673-80
pubmed: 10400354
Biomech Model Mechanobiol. 2004 Jun;2(4):219-38
pubmed: 15054639
J Biomech. 1985;18(5):317-28
pubmed: 4008502
Proc Inst Mech Eng H. 2011 Jun;225(6):585-96
pubmed: 22034742
Bone. 2009 Jul;45(1):77-83
pubmed: 19303955
J Biomech. 1995 Jan;28(1):69-81
pubmed: 7852443
J Biomech Eng. 1985 Aug;107(3):249-56
pubmed: 4046566
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Bone. 2012 Apr;50(4):876-84
pubmed: 22245631
J Biomech. 1976;9(7):459-64
pubmed: 939768
J Bone Miner Res. 1999 Jul;14(7):1167-74
pubmed: 10404017
J Biomech Eng. 2015 Jan;137(1):
pubmed: 25412197
J Biomech. 1993 Jun;26(6):677-87
pubmed: 8390470
J Biomech. 1976;9(6):407-12
pubmed: 932054
Comput Methods Biomech Biomed Engin. 2012;15(11):1137-44
pubmed: 22263706
J Bone Miner Res. 2001 Jul;16(7):1308-17
pubmed: 11450707
J Bone Miner Res. 1989 Feb;4(1):3-11
pubmed: 2718776
Biomech Model Mechanobiol. 2016 Feb;15(1):97-109
pubmed: 26070349
J Mech Behav Biomed Mater. 2009 Jul;2(3):255-63
pubmed: 19627830
Med Phys. 1999 Oct;26(10):2194-204
pubmed: 10535638
Curr Opin Rheumatol. 2015 Jul;27(4):406-13
pubmed: 26002033
Med Phys. 2002 Nov;29(11):2672-81
pubmed: 12462734
Crit Rev Eukaryot Gene Expr. 2009;19(4):319-38
pubmed: 19817708
Osteoporos Int. 2013 Mar;24(3):1023-33
pubmed: 22814943
Bone. 2018 Nov;116:111-119
pubmed: 30056165
J Biomech. 1991;24(9):825-39
pubmed: 1752867
J Biomech. 2003 Oct;36(10):1469-85
pubmed: 14499296
J R Soc Interface. 2009 Jan 6;6(30):97-109
pubmed: 18628200
J Mech Behav Biomed Mater. 2013 Feb;18:12-9
pubmed: 23237876
J R Soc Interface. 2015 May 6;12(106):
pubmed: 25808343
Phys Med Biol. 2016 Dec 21;61(24):8553-8576
pubmed: 27845939
Bone. 2011 Nov;49(5):1020-6
pubmed: 21855669
J Mech Behav Biomed Mater. 2015 Jun;46:261-70
pubmed: 25828157
J Theor Biol. 2007 Feb 21;244(4):597-620
pubmed: 17074362
J Biomech. 2011 May 17;44(8):1621-5
pubmed: 21453920
Biomech Model Mechanobiol. 2011 Dec;10(6):925-37
pubmed: 21267625
J Anat. 2005 Feb;206(2):115-25
pubmed: 15730477