Precise therapeutic gene correction by a simple nuclease-induced double-stranded break.
Alleles
CRISPR-Associated Protein 9
/ metabolism
CRISPR-Associated Proteins
/ metabolism
Cells, Cultured
Connectin
/ genetics
DNA Breaks, Double-Stranded
DNA End-Joining Repair
/ genetics
Frameshift Mutation
/ genetics
Hermanski-Pudlak Syndrome
/ genetics
Humans
Muscular Dystrophies, Limb-Girdle
/ genetics
Myoblasts
/ cytology
Poly (ADP-Ribose) Polymerase-1
/ antagonists & inhibitors
Poly(ADP-ribose) Polymerase Inhibitors
/ pharmacology
Repetitive Sequences, Nucleic Acid
/ genetics
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
28
05
2018
accepted:
22
02
2019
pubmed:
5
4
2019
medline:
18
12
2019
entrez:
5
4
2019
Statut:
ppublish
Résumé
Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)
Identifiants
pubmed: 30944467
doi: 10.1038/s41586-019-1076-8
pii: 10.1038/s41586-019-1076-8
pmc: PMC6483862
mid: NIHMS1522514
doi:
Substances chimiques
CRISPR-Associated Proteins
0
Connectin
0
Poly(ADP-ribose) Polymerase Inhibitors
0
TCAP protein, human
0
PARP1 protein, human
EC 2.4.2.30
Poly (ADP-Ribose) Polymerase-1
EC 2.4.2.30
CRISPR-Associated Protein 9
EC 3.1.-
Cas9 endonuclease Streptococcus pyogenes
EC 3.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
561-565Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL093766
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001453
Pays : United States
Organisme : NHLBI NIH HHS
ID : F31 HL147482
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS088689
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI117839
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD060848
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL131471
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK098252
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM115911
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007910
Pays : United States
Références
Moreira, E. S. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat. Genet. 24, 163–166 (2000).
pubmed: 10655062
doi: 10.1038/72822
El-Chemaly, S. & Young, L. R. Hermansky–Pudlak syndrome. Clin. Chest Med. 37, 505–511 (2016).
pubmed: 27514596
pmcid: 4987498
doi: 10.1016/j.ccm.2016.04.012
Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).
pubmed: 26439531
pmcid: 4638128
doi: 10.1016/j.tibs.2015.08.006
Bae, S., Kweon, J., Kim, H. S. & Kim, J.-S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11, 705–706 (2014).
pubmed: 24972169
doi: 10.1038/nmeth.3015
Kim, S.-I. et al. Microhomology-assisted scarless genome editing in human iPSCs. Nat. Commun. 9, 939 (2018).
pubmed: 29507284
pmcid: 5838097
doi: 10.1038/s41467-018-03044-y
Hisano, Y. et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 5, 8841 (2015).
pubmed: 25740433
pmcid: 4350073
doi: 10.1038/srep08841
Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K. T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR–Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133 (2016).
pubmed: 26678082
doi: 10.1038/nprot.2015.140
Bertz, M., Wilmanns, M. & Rief, M. The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proc. Natl Acad. Sci. USA 106, 13307–13310 (2009).
pubmed: 19622741
doi: 10.1073/pnas.0902312106
pmcid: 2726412
Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 33, 1–12 (2014).
pubmed: 24843229
pmcid: 4021627
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).
pubmed: 30010673
pmcid: 6390938
doi: 10.1038/nbt.4192
Caron, L. et al. A human pluripotent stem cell model of facioscapulohumeral muscular dystrophy-affected skeletal muscles. Stem Cells Transl. Med. 5, 1145–1161 (2016).
pubmed: 27217344
pmcid: 4996435
doi: 10.5966/sctm.2015-0224
Oh, J. et al. Positional cloning of a gene for Hermansky–Pudlak syndrome, a disorder of cytoplasmic organelles. Nat. Genet. 14, 300–306 (1996).
pubmed: 8896559
doi: 10.1038/ng1196-300
Richmond, B. et al. Melanocytes derived from patients with Hermansky–Pudlak syndrome types 1, 2, and 3 have distinct defects in cargo trafficking. J. Invest. Dermatol. 124, 420–427 (2005).
pubmed: 15675963
pmcid: 1635963
doi: 10.1111/j.0022-202X.2004.23585.x
Brantly, M. et al. Pulmonary function and high-resolution CT findings in patients with an inherited form of pulmonary fibrosis, Hermansky–Pudlak syndrome, due to mutations in HPS-1. Chest 117, 129–136 (2000).
pubmed: 10631210
doi: 10.1378/chest.117.1.129
Bolukbasi, M. F. et al. Orthogonal Cas9–Cas9 chimeras provide a versatile platform for genome editing. Nat. Commun. 9, 4856 (2018).
pubmed: 30451839
pmcid: 6242970
doi: 10.1038/s41467-018-07310-x
Sharma, S. et al. Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis. 6, e1697 (2015).
pubmed: 25789972
pmcid: 4385936
doi: 10.1038/cddis.2015.58
Wang, M. et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34, 6170–6182 (2006).
pubmed: 17088286
pmcid: 1693894
doi: 10.1093/nar/gkl840
Dutta, A. et al. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res. 45, 2585–2599 (2017).
pubmed: 27994036
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).
pubmed: 26422227
pmcid: 4638220
doi: 10.1016/j.cell.2015.09.038
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669
doi: 10.1093/nar/gkx1153
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).
pubmed: 27866654
doi: 10.1016/j.cell.2016.10.044
Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).
pubmed: 28220790
pmcid: 5473640
doi: 10.1038/ncomms14500
Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 (2019).
pubmed: 30581144
doi: 10.1016/j.molcel.2018.12.003
Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).
pubmed: 26098369
pmcid: 4540238
doi: 10.1038/nature14592
Bolukbasi, M. F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12, 1150–1156 (2015).
pubmed: 26480473
pmcid: 4679368
doi: 10.1038/nmeth.3624
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
pubmed: 29512652
pmcid: 5951633
doi: 10.1038/nature26155
van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).
pubmed: 27499295
doi: 10.1016/j.molcel.2016.06.037
Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).
pubmed: 27851729
pmcid: 5331785
doi: 10.1038/nature20565
Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).
pubmed: 30405244
pmcid: 6517069
doi: 10.1038/s41586-018-0686-x
Rittié, L. & Fisher, G. J. Isolation and culture of skin fibroblasts. Methods Mol. Med. 117, 83–98 (2005).
pubmed: 16118447
Stadler, G. et al. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles — CDK4 maintains the myogenic population. Skelet. Muscle 1, 12 (2011).
pubmed: 21798090
pmcid: 3156635
doi: 10.1186/2044-5040-1-12
Kearns, N. A. et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141, 219–223 (2014).
pubmed: 24346702
pmcid: 3865759
doi: 10.1242/dev.103341
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).
pubmed: 25300484
pmcid: 4267669
doi: 10.1093/nar/gku936
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
pubmed: 24142950
doi: 10.1093/bioinformatics/btt593
Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785 (2010).
pubmed: 20562416
pmcid: 2894519
doi: 10.1093/bioinformatics/btq281
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766
pmcid: 3290792
doi: 10.1101/gr.129684.111
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095
pmcid: 3346182
doi: 10.1038/nbt.1754
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).
pubmed: 25701572
pmcid: 4481842
doi: 10.1093/bioinformatics/btv112
Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30, 2076–2078 (2014).
pubmed: 24681907
pmcid: 4080743
doi: 10.1093/bioinformatics/btu168
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
pubmed: 9862982
pmcid: 148217
doi: 10.1093/nar/27.2.573
Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28, 1838–1844 (2012).
pubmed: 22569178
pmcid: 3389770
doi: 10.1093/bioinformatics/bts280
Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. https://doi.org/10.1038/s41591-019-0401-y (2019).
pubmed: 30911135
pmcid: 6512986
doi: 10.1038/s41591-019-0401-y
Liu, P. et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz184 (2019).
pubmed: 30892626
pmcid: 6486634
doi: 10.1093/nar/gkz184