Global analyses of Higgs portal singlet dark matter models using GAMBIT.


Journal

The European physical journal. C, Particles and fields
ISSN: 1434-6044
Titre abrégé: Eur Phys J C Part Fields
Pays: France
ID NLM: 101622319

Informations de publication

Date de publication:
2019
Historique:
received: 11 09 2018
accepted: 09 12 2018
entrez: 16 3 2019
pubmed: 16 3 2019
medline: 16 3 2019
Statut: ppublish

Résumé

We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison. Our analysis includes up-to-date likelihood functions for the dark matter relic density, invisible Higgs decays, and direct and indirect searches for weakly-interacting dark matter including the latest XENON1T data. We also account for important uncertainties arising from the local density and velocity distribution of dark matter, nuclear matrix elements relevant to direct detection, and Standard Model masses and couplings. In all Higgs portal models, we find parameter regions that can explain all of dark matter and give a good fit to all data. The case of vector dark matter requires the most tuning and is therefore slightly disfavoured from a Bayesian point of view. In the case of fermionic dark matter, we find a strong preference for including a CP-violating phase that allows suppression of constraints from direct detection experiments, with odds in favour of CP violation of the order of 100:1. Finally, we present DDCalc 2.0.0, a tool for calculating direct detection observables and likelihoods for arbitrary non-relativistic effective operators.

Identifiants

pubmed: 30872966
doi: 10.1140/epjc/s10052-018-6513-6
pii: 6513
pmc: PMC6383837
doi:

Types de publication

Journal Article

Langues

eng

Pagination

38

Références

Phys Rev Lett. 2018 Sep 14;121(11):111302
pubmed: 30265108
Phys Rev Lett. 2015 Jun 12;114(23):231302
pubmed: 26196790
Phys Rev Lett. 2017 Jan 13;118(2):021303
pubmed: 28128598
Phys Rev Lett. 2016 Sep 16;117(12):121303
pubmed: 27689262
Phys Rev Lett. 2017 Nov 3;119(18):181302
pubmed: 29219592
Phys Rev D Part Fields. 1994 Sep 15;50(6):3637-3649
pubmed: 10018006
Phys Rev D Part Fields. 1985 Jun 15;31(12):3059-3063
pubmed: 9955633
Phys Rev Lett. 2015 Feb 27;114(8):081302
pubmed: 25768751
Phys Rev Lett. 2016 Feb 19;116(7):071301
pubmed: 26943526
Phys Rev Lett. 2017 Jun 23;118(25):251301
pubmed: 28696731
Phys Rev Lett. 2017 Nov 3;119(18):181803
pubmed: 29219546
Eur Phys J C Part Fields. 2019;79(1):38
pubmed: 30872966
Phys Rev Lett. 2013 Mar 29;110(13):131302
pubmed: 23581307
Phys Rev Lett. 1985 Jul 8;55(2):257-259
pubmed: 10032042
Eur Phys J C Part Fields. 2018;78(10):830
pubmed: 30930682
Eur Phys J C Part Fields. 2017;77(8):568
pubmed: 32009844
Phys Rev Lett. 2015 Dec 4;115(23):231301
pubmed: 26684107

Auteurs

Peter Athron (P)

1School of Physics and Astronomy, Monash University, Melbourne, VIC 3800 Australia.
Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.

Csaba Balázs (C)

1School of Physics and Astronomy, Monash University, Melbourne, VIC 3800 Australia.
Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.

Ankit Beniwal (A)

Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.
3Department of Physics, University of Adelaide, Adelaide, SA 5005 Australia.
4Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden.
5Department of Physics, Stockholm University, 10691 Stockholm, Sweden.

Sanjay Bloor (S)

6Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK.

José Eliel Camargo-Molina (JE)

6Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK.

Jonathan M Cornell (JM)

7Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 Canada.

Ben Farmer (B)

6Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK.

Andrew Fowlie (A)

1School of Physics and Astronomy, Monash University, Melbourne, VIC 3800 Australia.
Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.
8Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, 210023 Jiangsu China.

Tomás E Gonzalo (T)

9Department of Physics, University of Oslo, 0316 Oslo, Norway.

Felix Kahlhoefer (F)

10Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, 52056 Aachen, Germany.

Anders Kvellestad (A)

6Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK.
9Department of Physics, University of Oslo, 0316 Oslo, Norway.

Gregory D Martinez (GD)

11Physics and Astronomy Department, University of California, Los Angeles, CA 90095 USA.

Pat Scott (P)

6Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK.

Aaron C Vincent (AC)

12Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6 Canada.

Sebastian Wild (S)

13DESY, Notkestraße 85, 22607 Hamburg, Germany.

Martin White (M)

Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.
3Department of Physics, University of Adelaide, Adelaide, SA 5005 Australia.

Anthony G Williams (AG)

Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Melbourne, Australia.
3Department of Physics, University of Adelaide, Adelaide, SA 5005 Australia.

Classifications MeSH