Global analyses of Higgs portal singlet dark matter models using GAMBIT.
Journal
The European physical journal. C, Particles and fields
ISSN: 1434-6044
Titre abrégé: Eur Phys J C Part Fields
Pays: France
ID NLM: 101622319
Informations de publication
Date de publication:
2019
2019
Historique:
received:
11
09
2018
accepted:
09
12
2018
entrez:
16
3
2019
pubmed:
16
3
2019
medline:
16
3
2019
Statut:
ppublish
Résumé
We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison. Our analysis includes up-to-date likelihood functions for the dark matter relic density, invisible Higgs decays, and direct and indirect searches for weakly-interacting dark matter including the latest XENON1T data. We also account for important uncertainties arising from the local density and velocity distribution of dark matter, nuclear matrix elements relevant to direct detection, and Standard Model masses and couplings. In all Higgs portal models, we find parameter regions that can explain all of dark matter and give a good fit to all data. The case of vector dark matter requires the most tuning and is therefore slightly disfavoured from a Bayesian point of view. In the case of fermionic dark matter, we find a strong preference for including a CP-violating phase that allows suppression of constraints from direct detection experiments, with odds in favour of CP violation of the order of 100:1. Finally, we present DDCalc 2.0.0, a tool for calculating direct detection observables and likelihoods for arbitrary non-relativistic effective operators.
Identifiants
pubmed: 30872966
doi: 10.1140/epjc/s10052-018-6513-6
pii: 6513
pmc: PMC6383837
doi:
Types de publication
Journal Article
Langues
eng
Pagination
38Références
Phys Rev Lett. 2018 Sep 14;121(11):111302
pubmed: 30265108
Phys Rev Lett. 2015 Jun 12;114(23):231302
pubmed: 26196790
Phys Rev Lett. 2017 Jan 13;118(2):021303
pubmed: 28128598
Phys Rev Lett. 2016 Sep 16;117(12):121303
pubmed: 27689262
Phys Rev Lett. 2017 Nov 3;119(18):181302
pubmed: 29219592
Phys Rev D Part Fields. 1994 Sep 15;50(6):3637-3649
pubmed: 10018006
Phys Rev D Part Fields. 1985 Jun 15;31(12):3059-3063
pubmed: 9955633
Phys Rev Lett. 2015 Feb 27;114(8):081302
pubmed: 25768751
Phys Rev Lett. 2016 Feb 19;116(7):071301
pubmed: 26943526
Phys Rev Lett. 2017 Jun 23;118(25):251301
pubmed: 28696731
Phys Rev Lett. 2017 Nov 3;119(18):181803
pubmed: 29219546
Eur Phys J C Part Fields. 2019;79(1):38
pubmed: 30872966
Phys Rev Lett. 2013 Mar 29;110(13):131302
pubmed: 23581307
Phys Rev Lett. 1985 Jul 8;55(2):257-259
pubmed: 10032042
Eur Phys J C Part Fields. 2018;78(10):830
pubmed: 30930682
Eur Phys J C Part Fields. 2017;77(8):568
pubmed: 32009844
Phys Rev Lett. 2015 Dec 4;115(23):231301
pubmed: 26684107