Multimodal Assessment of Corneal Erosions Using Optical Coherence Tomography and Automated Grading of Fluorescein Staining in a Rabbit Dry Eye Model.
SD-OCT
corneal defects
dry eye
epithelial erosions
fluorescein
Journal
Translational vision science & technology
ISSN: 2164-2591
Titre abrégé: Transl Vis Sci Technol
Pays: United States
ID NLM: 101595919
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
11
07
2018
accepted:
11
12
2018
entrez:
6
3
2019
pubmed:
6
3
2019
medline:
6
3
2019
Statut:
epublish
Résumé
To evaluate the potential use of anterior segment spectral domain optical coherence tomography (AS-SD-OCT) combined with an automated grading of fluorescein staining for assessment of corneal erosions in a rabbit short-term dry eye model. Twenty-one New Zealand white rabbits were anesthetized and eyes were kept open for 140 minutes to induce acute corneal desiccation. Rectangular scans of the cornea were performed using Spectralis AS-SD-OCT. Total corneal thickness, corneal epithelial thickness, and the percentage of epithelial erosion area (PEEA) were evaluated. Corneas were stained with fluorescein and graded automatically using EpiView and semi-automatically using ImageJ. Spearman's rank-order correlations were calculated to compare the AS-SD-OCT PEEA and the two corneal staining scores. Eye desiccation resulted in corneal epithelium erosions that covered 0.67% to 14.2% of the central cornea (mean ± SD: 3.95% ± 3.2%) by AS-SD-OCT. The percentage of corneal area positively stained with fluorescein ranged from 0.24% to 38.01% (mean ± SD: 12.24% ± 9.7%) by using ImageJ, correlating with the AS-SD-OCT PEEA (Spearman's ρ, 0.574; Our study suggests that multimodal analysis of AS-SD-OCT and grading of fluorescein staining using EpiView software may enable quantitative assessment of corneal epithelial erosions in a rabbit short-term dry eye model. This multimodal imaging analysis may be applied for evaluation of superficial punctate keratitis associated with dry eye.
Identifiants
pubmed: 30834175
doi: 10.1167/tvst.8.1.27
pii: TVST-18-0978
pmc: PMC6396684
doi:
Types de publication
Journal Article
Langues
eng
Pagination
27Références
Cornea. 2003 Oct;22(7):640-50
pubmed: 14508260
Vet Ophthalmol. 2005 Mar-Apr;8(2):85-8
pubmed: 15762921
Cont Lens Anterior Eye. 2003 Mar;26(1):3-9
pubmed: 16303491
Cont Lens Anterior Eye. 2003 Mar;26(1):27-35
pubmed: 16303494
Ocul Surf. 2007 Apr;5(2):75-92
pubmed: 17508116
Ocul Surf. 2007 Apr;5(2):108-52
pubmed: 17508118
Anat Rec (Hoboken). 2008 Feb;291(2):191-203
pubmed: 18213705
Cont Lens Anterior Eye. 2012 Apr;35(2):81-4
pubmed: 21917503
Invest Ophthalmol Vis Sci. 2011 Nov 25;52(12):9116-23
pubmed: 22025572
Vet Ophthalmol. 2013 Mar;16(2):130-4
pubmed: 22672083
Vet Ophthalmol. 2014 Mar;17(2):87-90
pubmed: 23531203
Eye Contact Lens. 2013 May;39(3):239-46
pubmed: 23629006
Cont Lens Anterior Eye. 2014 Jun;37(3):213-23
pubmed: 24332360
Optom Vis Sci. 2014 Dec;91(12):1446-54
pubmed: 25279779
Invest Ophthalmol Vis Sci. 2014 Nov 18;55(12):7896-903
pubmed: 25406292
Prog Retin Eye Res. 2015 Jan;44:36-61
pubmed: 25461622
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2340-7
pubmed: 26066593
Invest Ophthalmol Vis Sci. 2017 May 1;58(6):BIO168-BIO173
pubmed: 28693042
Exp Eye Res. 1972 Jul;14(1):13-20
pubmed: 4114286
J Am Optom Assoc. 1995 Jul;66(7):435-41
pubmed: 7560732
CLAO J. 1995 Oct;21(4):221-32
pubmed: 8565190
J Ocul Pharmacol Ther. 1995 Winter;11(4):503-8
pubmed: 8574813
Curr Eye Res. 1997 Mar;16(3):214-21
pubmed: 9088737