Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum.
alpha rhythm
entrainment
frequency tagging
phase synchronization
spatial attention
steady-state response (SSR)
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
17 04 2019
17 04 2019
Historique:
received:
29
06
2018
revised:
16
01
2019
accepted:
03
02
2019
pubmed:
17
2
2019
medline:
9
6
2020
entrez:
17
2
2019
Statut:
ppublish
Résumé
Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: one regards them mostly as synchronized (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses [classically termed steady-state responses (SSRs)] that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha band (8-13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasizing stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms.
Identifiants
pubmed: 30770401
pii: JNEUROSCI.1633-18.2019
doi: 10.1523/JNEUROSCI.1633-18.2019
pmc: PMC6468105
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3119-3129Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 098433/098434
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2019 Keitel et al.
Déclaration de conflit d'intérêts
The authors declare no competing financial interests.
Références
Curr Biol. 2018 May 7;28(9):1453-1459.e3
pubmed: 29681475
J Neurosci Methods. 2014 May 15;228:57-66
pubmed: 24675051
Exp Brain Res. 2001 Apr;137(3-4):346-53
pubmed: 11355381
Neurosci Lett. 2013 Nov 27;556:113-7
pubmed: 24120431
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
Cereb Cortex. 2014 Feb;24(2):550-61
pubmed: 23118197
J Cogn Neurosci. 2012 Aug;24(8):1779-93
pubmed: 22360591
Trends Cogn Sci. 2004 Aug;8(8):347-55
pubmed: 15335461
J Cogn Neurosci. 2012 Dec;24(12):2321-33
pubmed: 22905825
Science. 2005 Apr 1;308(5718):111-3
pubmed: 15802603
Neuroimage. 2013 Oct 1;79:223-33
pubmed: 23639261
Cereb Cortex. 2013 Apr;23(4):940-6
pubmed: 22510530
Hum Brain Mapp. 2007 Dec;28(12):1318-33
pubmed: 17274017
Neuroimage. 2017 Nov 1;161:32-42
pubmed: 28802870
PLoS One. 2011 Jan 18;6(1):e14543
pubmed: 21267081
J Neurosci Methods. 2010 Sep 30;192(1):152-62
pubmed: 20654646
J Vis. 2015;15(6):4
pubmed: 26024451
Nature. 1946 Oct 19;158(4016):540
pubmed: 21001939
Electroencephalogr Clin Neurophysiol. 1987 Jan;66(1):75-81
pubmed: 2431869
Brain Res. 2016 Mar 15;1635:143-52
pubmed: 26835557
Electroencephalogr Clin Neurophysiol. 1966 Mar;20(3):238-48
pubmed: 4160391
J Cogn Neurosci. 2017 Mar;29(3):480-494
pubmed: 28129063
Front Psychol. 2011 Jul 20;2:170
pubmed: 21811485
Nat Neurosci. 2007 Jan;10(1):117-25
pubmed: 17173045
Eur J Neurosci. 2018 Oct;48(7):2551-2565
pubmed: 29737585
J Neurosci. 2017 Oct 18;37(42):10173-10184
pubmed: 28931569
J Vis. 2010 Dec 31;10(14):
pubmed: 21196511
Front Hum Neurosci. 2016 Feb 03;10:10
pubmed: 26869898
Int J Psychophysiol. 2015 Sep;97(3):171-3
pubmed: 26071227
Neuroimage. 2018 Aug 1;176:390-403
pubmed: 29730493
BMC Neurosci. 2015 Dec 21;16:95
pubmed: 26690632
Anesth Analg. 2003 Nov;97(5):1396-1402
pubmed: 14570657
J Neurosci. 2014 Aug 27;34(35):11526-33
pubmed: 25164651
Neuroimage. 2012 Nov 1;63(2):674-86
pubmed: 22796984
Sci Rep. 2018 Feb 14;8(1):2990
pubmed: 29445210
Brain Res Cogn Brain Res. 1998 Apr;6(4):249-61
pubmed: 9593922
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Psychon Bull Rev. 2018 Feb;25(1):128-142
pubmed: 28251595
Eur J Neurosci. 2007 Jan;25(2):603-10
pubmed: 17284203
PLoS Biol. 2014 Oct 21;12(10):e1001965
pubmed: 25333286
J Neurosci. 2011 May 4;31(18):6750-8
pubmed: 21543604
Hum Brain Mapp. 2009 Oct;30(10):3417-25
pubmed: 19384888
Front Hum Neurosci. 2016 Apr 26;10:184
pubmed: 27199707
Elife. 2016 May 05;5:
pubmed: 27146891
J Neurosci. 2006 Sep 13;26(37):9494-502
pubmed: 16971533
Neuroimage. 2005 May 15;26(1):91-8
pubmed: 15862209
Front Hum Neurosci. 2010 Nov 04;4:186
pubmed: 21119777
Neuroimage. 2012 Mar;60(1):571-81
pubmed: 22197788
Nat Neurosci. 1998 Nov;1(7):631-4
pubmed: 10196572
J Neurosci. 2014 Mar 5;34(10):3536-44
pubmed: 24599454
Clin Neurophysiol. 2001 Apr;112(4):713-9
pubmed: 11275545
J Neurosci. 1996 Jul 1;16(13):4240-9
pubmed: 8753885
Prog Neurobiol. 2010 Apr;90(4):418-38
pubmed: 19963032
Curr Biol. 2012 Oct 23;22(20):1969-74
pubmed: 23041197
Front Neurosci. 2018 Mar 07;12:95
pubmed: 29563860
Eur J Neurosci. 2018 Oct;48(7):2566-2584
pubmed: 28887893
Neuroimage. 2015 Jul 1;114:57-70
pubmed: 25917516
J Neurosci. 2000 Mar 15;20(6):RC63
pubmed: 10704517
Neuron. 1998 May;20(5):959-69
pubmed: 9620700
J Neurosci. 2017 Jan 25;37(4):807-819
pubmed: 28123017
J Neurosci. 2015 Oct 21;35(42):14195-204
pubmed: 26490860
J Neurosci. 1998 Jun 1;18(11):4244-54
pubmed: 9592102
J Physiol. 1934 Jul 31;81(4):440-71
pubmed: 16994555
J Neurosci. 2015 Oct 28;35(43):14435-47
pubmed: 26511236
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Conscious Cogn. 2017 Sep;54:47-55
pubmed: 28222937
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8439-44
pubmed: 26100913
Curr Biol. 2012 May 8;22(9):R306-8
pubmed: 22575469
J Neurosci. 2014 Jul 30;34(31):10137-40
pubmed: 25080577
eNeuro. 2017 Dec 12;4(6):
pubmed: 29255794
J Neurosci. 2003 Dec 17;23(37):11741-52
pubmed: 14684876
Neuroimage. 2017 Feb 1;146:58-70
pubmed: 27867090
J Cogn Neurosci. 2016 Jan;28(1):111-24
pubmed: 26401813
Proc Natl Acad Sci U S A. 1996 May 14;93(10):4770-4
pubmed: 8643478
J Neurosci Methods. 2018 Feb 1;295:111-120
pubmed: 29247676
Neuroimage. 2019 Dec;203:116146
pubmed: 31493535
Nature. 2000 Nov 9;408(6809):196-9
pubmed: 11089972
J Pers Soc Psychol. 2011 Mar;100(3):426-32
pubmed: 21280965
PLoS One. 2017 Jun 12;12(6):e0178934
pubmed: 28604795
Brain Topogr. 2006 Winter;19(1-2):43-52
pubmed: 17019635
Psychon Bull Rev. 2009 Apr;16(2):225-37
pubmed: 19293088
J Neurophysiol. 2006 Jun;95(6):3844-51
pubmed: 16571739
PLoS Biol. 2016 Jun 29;14(6):e1002498
pubmed: 27355236
Neurosci Biobehav Rev. 2018 Mar;86:150-165
pubmed: 29223770