Inhibitory effects of azithromycin on the adherence ability of Porphyromonas gingivalis.
antibiotic
antimicrobial
gingivitis
microbiology
oral medicine
pathogenesis of periodontal disease
periodontitis
Journal
Journal of periodontology
ISSN: 1943-3670
Titre abrégé: J Periodontol
Pays: United States
ID NLM: 8000345
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
25
09
2018
revised:
07
12
2018
accepted:
24
12
2018
pubmed:
29
1
2019
medline:
9
4
2020
entrez:
29
1
2019
Statut:
ppublish
Résumé
Porphyromonas gingivalis is a major pathogen and has a high detection rate in periodontal disease. Fimbriae and hemagglutinin are expressed by P. gingivalis, and these play an important role in the adherence of the bacteria to periodontal tissue and biofilm formation. The aim of this study was to investigate the effects of sub-minimal inhibitory concentrations (sub-MICs) of azithromycin on the adherence of P. gingivalis, focusing on the inhibition of fimbriae expression and hemagglutinin activity. P. gingivalis ATCC 33277 were incubated anaerobically with sub-MICs of azithromycin at 37°C by gentle shaking for 18 hours. The bacterial cells were harvested, washed twice with phosphate-buffered saline (PBS), and the proteins analyzed by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. Adherence assay and hemagglutinin activity tests were done with the same culture. The results of SDS-PAGE indicated that the sub-MICs of azithromycin inhibited 41-kDa fimbrial protein expression and hemagglutinin activities. The disappearance of 41-kDa fimbrial protein expression and long fimbriae in 0.4 µg/mL, 0.2 µg/mL, and 0.1 µg/mL of azithromycin was confirmed by western blotting and transmission electron microscopy. The adherence of P. gingivalis to human gingival epithelial cells was reduced by sub-MICs of azithromycin compared with the adherence levels without antibiotic. These results suggest that sub-MICs of azithromycin may reduce the adherence of P. gingivalis to host cells, by inhibiting production of fimbriae and hemagglutinin activities. Therefore, azithromycin can be used as a biofilm treatment of periodontal disease caused by P. gingivalis.
Sections du résumé
BACKGROUND
Porphyromonas gingivalis is a major pathogen and has a high detection rate in periodontal disease. Fimbriae and hemagglutinin are expressed by P. gingivalis, and these play an important role in the adherence of the bacteria to periodontal tissue and biofilm formation. The aim of this study was to investigate the effects of sub-minimal inhibitory concentrations (sub-MICs) of azithromycin on the adherence of P. gingivalis, focusing on the inhibition of fimbriae expression and hemagglutinin activity.
METHODS
P. gingivalis ATCC 33277 were incubated anaerobically with sub-MICs of azithromycin at 37°C by gentle shaking for 18 hours. The bacterial cells were harvested, washed twice with phosphate-buffered saline (PBS), and the proteins analyzed by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. Adherence assay and hemagglutinin activity tests were done with the same culture.
RESULTS
The results of SDS-PAGE indicated that the sub-MICs of azithromycin inhibited 41-kDa fimbrial protein expression and hemagglutinin activities. The disappearance of 41-kDa fimbrial protein expression and long fimbriae in 0.4 µg/mL, 0.2 µg/mL, and 0.1 µg/mL of azithromycin was confirmed by western blotting and transmission electron microscopy. The adherence of P. gingivalis to human gingival epithelial cells was reduced by sub-MICs of azithromycin compared with the adherence levels without antibiotic.
CONCLUSIONS
These results suggest that sub-MICs of azithromycin may reduce the adherence of P. gingivalis to host cells, by inhibiting production of fimbriae and hemagglutinin activities. Therefore, azithromycin can be used as a biofilm treatment of periodontal disease caused by P. gingivalis.
Identifiants
pubmed: 30690740
doi: 10.1002/JPER.18-0559
doi:
Substances chimiques
Bacterial Proteins
0
Fimbriae Proteins
147680-16-8
Azithromycin
83905-01-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
903-910Informations de copyright
© 2019 American Academy of Periodontology.