SETD3 is an actin histidine methyltransferase that prevents primary dystocia.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
01 2019
Historique:
received: 24 03 2018
accepted: 30 11 2018
pubmed: 11 1 2019
medline: 16 7 2019
entrez: 11 1 2019
Statut: ppublish

Résumé

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur

Identifiants

pubmed: 30626964
doi: 10.1038/s41586-018-0821-8
pii: 10.1038/s41586-018-0821-8
pmc: PMC6511263
mid: NIHMS1515852
doi:

Substances chimiques

Actins 0
Histones 0
Histidine 4QD397987E
Histone Methyltransferases EC 2.1.1.-
Methyltransferases EC 2.1.1.-
Setd3 protein, mouse EC 2.1.1.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

372-376

Subventions

Organisme : NIAID NIH HHS
ID : DP2 AI104557
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM114306
Pays : United States
Organisme : NHLBI NIH HHS
ID : F32 HL140772
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM079641
Pays : United States
Organisme : NIH HHS
ID : GM33289
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM033289
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI141970
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI109662
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Johnson, P., Harris, C. I. & Perry, S. V. 3-methylhistidine in actin and other muscle proteins. Biochem. J. 103, 79P (1967).
doi: 10.1042/bj1050079
Seaborne, R. A. et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci. Rep. 8, 1898 (2018).
doi: 10.1038/s41598-018-20287-3
Carlson, S. M. & Gozani, O. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb. Perspect. Med. 6, a026435 (2016).
doi: 10.1101/cshperspect.a026435
Eom, G. H. et al. Histone methyltransferase SETD3 regulates muscle differentiation. J. Biol. Chem. 286, 34733–34742 (2011).
doi: 10.1074/jbc.M110.203307
Chang, Y. et al. Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res. 39, 6380–6389 (2011).
doi: 10.1093/nar/gkr256
Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).
doi: 10.1038/ni.1968
Clarke, S. G. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci. 38, 243–252 (2013).
doi: 10.1016/j.tibs.2013.02.004
Webb, K. J. et al. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J. Biol. Chem. 285, 37598–37606 (2010).
doi: 10.1074/jbc.M110.170787
Kalhor, H. R. et al. A highly conserved 3-methylhistidine modification is absent in yeast actin. Arch. Biochem. Biophys. 370, 105–111 (1999).
doi: 10.1006/abbi.1999.1370
Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003).
doi: 10.1016/S0968-0004(03)00090-2
Del Rizzo, P. A. & Trievel, R. C. Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059–1067 (2011).
doi: 10.4161/epi.6.9.16069
Yao, X., Grade, S., Wriggers, W. & Rubenstein, P. A. His
doi: 10.1074/jbc.274.52.37443
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).
doi: 10.1038/nature19356
Nyman, T. et al. The role of MeH73 in actin polymerization and ATP hydrolysis. J. Mol. Biol. 317, 577–589 (2002).
doi: 10.1006/jmbi.2002.5436
Narver, H. L. Oxytocin in the treatment of dystocia in mice. J. Am. Assoc. Lab. Anim. Sci. 51, 10–17 (2012).
pubmed: 22330862 pmcid: 3276960
Smith, R., Imtiaz, M., Banney, D., Paul, J. W. & Young, R. C. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am. J. Obstet. Gynecol. 213, 181–185 (2015).
doi: 10.1016/j.ajog.2015.06.040
Guo, D. C. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).
doi: 10.1016/j.ajhg.2009.04.007
Milewicz, D. M. et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am. J. Med. Genet. A 152A, 2437–2443 (2010).
doi: 10.1002/ajmg.a.33657
Cao, X. J., Arnaudo, A. M. & Garcia, B. A. Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8, 477–485 (2013).
doi: 10.4161/epi.24547
Cooper, K. & Brown, S. ACTA2 mutation and postpartum hemorrhage: a case report. BMC Med. Genet. 18, 143 (2017).
doi: 10.1186/s12881-017-0505-5
Gunst, S. J. & Zhang, W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am. J. Physiol. Cell Physiol. 295, C576–C587 (2008).
doi: 10.1152/ajpcell.00253.2008
Kwiatkowki, S. et al. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife 7, e37921 (2018).
doi: 10.7554/eLife.37921
Rothbart, S. B., Krajewski, K., Strahl, B. D. & Fuchs, S. M. Peptide microarrays to interrogate the “histone code”. Methods Enzymol. 512, 107–135 (2012).
doi: 10.1016/B978-0-12-391940-3.00006-8
Patel, A., Dharmarajan, V., Vought, V. E. & Cosgrove, M. S. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284, 24242–24256 (2009).
doi: 10.1074/jbc.M109.014498
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
doi: 10.1038/sj.emboj.7601967
An, S., Yeo, K. J., Jeon, Y. H. & Song, J. J. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J. Biol. Chem. 286, 8369–8374 (2011).
doi: 10.1074/jbc.M110.203380
Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).
doi: 10.1038/nature03117
Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).
doi: 10.1016/S0960-9822(02)00901-6
Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).
doi: 10.1038/nature05287
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
doi: 10.1038/35020506
Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).
doi: 10.1074/jbc.M101914200
Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).
doi: 10.1016/j.molcel.2011.08.042
Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).
doi: 10.1038/nature13320
Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099 (2002).
doi: 10.1016/S0960-9822(02)00924-7
Kurash, J. K. et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell 29, 392–400 (2008).
doi: 10.1016/j.molcel.2007.12.025
Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).
doi: 10.1038/ni.1968
Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. Identifying nuclear protein–protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol. Biol. 1188, 207–226 (2014).
doi: 10.1007/978-1-4939-1142-4_15
Hsiao, K., Zegzouti, H. & Goueli, S. A. Methyltransferase-Glo: a universal, bioluminescent and homogenous assay for monitoring all classes of methyltransferases. Epigenomics 8, 321–339 (2016).
doi: 10.2217/epi.15.113
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511
Kron, S. J., Drubin, D. G., Botstein, D. & Spudich, J. A. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin. Proc. Natl Acad. Sci. USA 89, 4466–4470 (1992).
doi: 10.1073/pnas.89.10.4466
Schafer, D. A., Jennings, P. B. & Cooper, J. A. Rapid and efficient purification of actin from nonmuscle sources. Cell Motil. Cytoskeleton 39, 166–171 (1998).
doi: 10.1002/(SICI)1097-0169(1998)39:2<166::AID-CM7>3.0.CO;2-4
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 59, 228–234 (2003).
doi: 10.1107/S0108767303005488
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Hansen, S. D., Zuchero, J. B. & Mullins, R. D. Cytoplasmic actin: purification and single molecule assembly assays. Methods Mol. Biol. 1046, 145–170 (2013).
doi: 10.1007/978-1-62703-538-5_9
Yao, X., Nguyen, V., Wriggers, W. & Rubenstein, P. A. Regulation of yeast actin behavior by interaction of charged residues across the interdomain cleft. J. Biol. Chem. 277, 22875–22882 (2002).
doi: 10.1074/jbc.M201685200
Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).
doi: 10.1007/s00335-012-9422-2
Le, A., Ng, A., Kwan, T., Cusmano-Ozog, K. & Cowan, T. M. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 944, 166–174 (2014).
doi: 10.1016/j.jchromb.2013.11.017
Adhikari, A. S. et al. Early-onset hypertrophic cardiomyopathy mutations significantly increase the velocity, force, and actin-activated atpase activity of human β-cardiac myosin. Cell Rep. 17, 2857–2864 (2016).
doi: 10.1016/j.celrep.2016.11.040
Sommese, R. F. et al. Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function. Proc. Natl Acad. Sci. USA 110, 12607–12612 (2013).
doi: 10.1073/pnas.1309493110
Liu, C., Kawana, M., Song, D., Ruppel, K. M. & Spudich, J. A. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat. Struct. Mol. Biol. 25, 505–514 (2018).
doi: 10.1038/s41594-018-0069-x
Kron, S. J., Toyoshima, Y. Y., Uyeda, T. Q. & Spudich, J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 196, 399–416 (1991).
doi: 10.1016/0076-6879(91)96035-P
Nag, S. et al. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. Sci. Adv. 1, e1500511 (2015).
doi: 10.1126/sciadv.1500511
Kawana, M., Sarkar, S. S., Sutton, S., Ruppel, K. M. & Spudich, J. A. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Sci. Adv. 3, e1601959 (2017).
doi: 10.1126/sciadv.1601959
Mortensen, K. I., Sung, J., Flyvbjerg, H. & Spudich, J. A. Optimized measurements of separations and angles between intra-molecular fluorescent markers. Nat. Commun. 6, 8621 (2015).
doi: 10.1038/ncomms9621
Aksel, T., Choe Yu, E., Sutton, S., Ruppel, K. M. & Spudich, J. A. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep. 11, 910–920 (2015).
doi: 10.1016/j.celrep.2015.04.006
Trybus, K. M. Biochemical studies of myosin. Methods 22, 327–335 (2000).
doi: 10.1006/meth.2000.1085

Auteurs

Alex W Wilkinson (AW)

Department of Biology, Stanford University, Stanford, CA, USA.

Jonathan Diep (J)

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.

Shaobo Dai (S)

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Shuo Liu (S)

Department of Biology, Stanford University, Stanford, CA, USA.

Yaw Shin Ooi (YS)

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.

Dan Song (D)

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

Tie-Mei Li (TM)

Department of Biology, Stanford University, Stanford, CA, USA.

John R Horton (JR)

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Xing Zhang (X)

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Chao Liu (C)

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

Darshan V Trivedi (DV)

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

Katherine M Ruppel (KM)

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

José G Vilches-Moure (JG)

Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Kerriann M Casey (KM)

Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Justin Mak (J)

Stanford Healthcare, Palo Alto, CA, USA.

Tina Cowan (T)

Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

Joshua E Elias (JE)

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.

Claude M Nagamine (CM)

Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

James A Spudich (JA)

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

Xiaodong Cheng (X)

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. xcheng5@mdanderson.org.

Jan E Carette (JE)

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. carette@stanford.edu.

Or Gozani (O)

Department of Biology, Stanford University, Stanford, CA, USA. ogozani@stanford.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH