SETD3 is an actin histidine methyltransferase that prevents primary dystocia.
Actins
/ chemistry
Animals
Cell Line
Dystocia
/ enzymology
Female
Histidine
/ chemistry
Histone Methyltransferases
Histones
Litter Size
/ genetics
Male
Methylation
Methyltransferases
/ deficiency
Mice
Models, Molecular
Muscle, Smooth
/ cytology
Pregnancy
Proteomics
Uterine Contraction
Uterus
/ cytology
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
24
03
2018
accepted:
30
11
2018
pubmed:
11
1
2019
medline:
16
7
2019
entrez:
11
1
2019
Statut:
ppublish
Résumé
For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur
Identifiants
pubmed: 30626964
doi: 10.1038/s41586-018-0821-8
pii: 10.1038/s41586-018-0821-8
pmc: PMC6511263
mid: NIHMS1515852
doi:
Substances chimiques
Actins
0
Histones
0
Histidine
4QD397987E
Histone Methyltransferases
EC 2.1.1.-
Methyltransferases
EC 2.1.1.-
Setd3 protein, mouse
EC 2.1.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
372-376Subventions
Organisme : NIAID NIH HHS
ID : DP2 AI104557
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM114306
Pays : United States
Organisme : NHLBI NIH HHS
ID : F32 HL140772
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM079641
Pays : United States
Organisme : NIH HHS
ID : GM33289
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM033289
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI141970
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI109662
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Johnson, P., Harris, C. I. & Perry, S. V. 3-methylhistidine in actin and other muscle proteins. Biochem. J. 103, 79P (1967).
doi: 10.1042/bj1050079
Seaborne, R. A. et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci. Rep. 8, 1898 (2018).
doi: 10.1038/s41598-018-20287-3
Carlson, S. M. & Gozani, O. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb. Perspect. Med. 6, a026435 (2016).
doi: 10.1101/cshperspect.a026435
Eom, G. H. et al. Histone methyltransferase SETD3 regulates muscle differentiation. J. Biol. Chem. 286, 34733–34742 (2011).
doi: 10.1074/jbc.M110.203307
Chang, Y. et al. Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res. 39, 6380–6389 (2011).
doi: 10.1093/nar/gkr256
Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).
doi: 10.1038/ni.1968
Clarke, S. G. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci. 38, 243–252 (2013).
doi: 10.1016/j.tibs.2013.02.004
Webb, K. J. et al. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J. Biol. Chem. 285, 37598–37606 (2010).
doi: 10.1074/jbc.M110.170787
Kalhor, H. R. et al. A highly conserved 3-methylhistidine modification is absent in yeast actin. Arch. Biochem. Biophys. 370, 105–111 (1999).
doi: 10.1006/abbi.1999.1370
Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003).
doi: 10.1016/S0968-0004(03)00090-2
Del Rizzo, P. A. & Trievel, R. C. Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059–1067 (2011).
doi: 10.4161/epi.6.9.16069
Yao, X., Grade, S., Wriggers, W. & Rubenstein, P. A. His
doi: 10.1074/jbc.274.52.37443
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).
doi: 10.1038/nature19356
Nyman, T. et al. The role of MeH73 in actin polymerization and ATP hydrolysis. J. Mol. Biol. 317, 577–589 (2002).
doi: 10.1006/jmbi.2002.5436
Narver, H. L. Oxytocin in the treatment of dystocia in mice. J. Am. Assoc. Lab. Anim. Sci. 51, 10–17 (2012).
pubmed: 22330862
pmcid: 3276960
Smith, R., Imtiaz, M., Banney, D., Paul, J. W. & Young, R. C. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am. J. Obstet. Gynecol. 213, 181–185 (2015).
doi: 10.1016/j.ajog.2015.06.040
Guo, D. C. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).
doi: 10.1016/j.ajhg.2009.04.007
Milewicz, D. M. et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am. J. Med. Genet. A 152A, 2437–2443 (2010).
doi: 10.1002/ajmg.a.33657
Cao, X. J., Arnaudo, A. M. & Garcia, B. A. Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8, 477–485 (2013).
doi: 10.4161/epi.24547
Cooper, K. & Brown, S. ACTA2 mutation and postpartum hemorrhage: a case report. BMC Med. Genet. 18, 143 (2017).
doi: 10.1186/s12881-017-0505-5
Gunst, S. J. & Zhang, W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am. J. Physiol. Cell Physiol. 295, C576–C587 (2008).
doi: 10.1152/ajpcell.00253.2008
Kwiatkowki, S. et al. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife 7, e37921 (2018).
doi: 10.7554/eLife.37921
Rothbart, S. B., Krajewski, K., Strahl, B. D. & Fuchs, S. M. Peptide microarrays to interrogate the “histone code”. Methods Enzymol. 512, 107–135 (2012).
doi: 10.1016/B978-0-12-391940-3.00006-8
Patel, A., Dharmarajan, V., Vought, V. E. & Cosgrove, M. S. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284, 24242–24256 (2009).
doi: 10.1074/jbc.M109.014498
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
doi: 10.1038/sj.emboj.7601967
An, S., Yeo, K. J., Jeon, Y. H. & Song, J. J. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J. Biol. Chem. 286, 8369–8374 (2011).
doi: 10.1074/jbc.M110.203380
Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).
doi: 10.1038/nature03117
Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).
doi: 10.1016/S0960-9822(02)00901-6
Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).
doi: 10.1038/nature05287
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
doi: 10.1038/35020506
Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).
doi: 10.1074/jbc.M101914200
Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).
doi: 10.1016/j.molcel.2011.08.042
Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).
doi: 10.1038/nature13320
Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099 (2002).
doi: 10.1016/S0960-9822(02)00924-7
Kurash, J. K. et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell 29, 392–400 (2008).
doi: 10.1016/j.molcel.2007.12.025
Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).
doi: 10.1038/ni.1968
Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. Identifying nuclear protein–protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol. Biol. 1188, 207–226 (2014).
doi: 10.1007/978-1-4939-1142-4_15
Hsiao, K., Zegzouti, H. & Goueli, S. A. Methyltransferase-Glo: a universal, bioluminescent and homogenous assay for monitoring all classes of methyltransferases. Epigenomics 8, 321–339 (2016).
doi: 10.2217/epi.15.113
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511
Kron, S. J., Drubin, D. G., Botstein, D. & Spudich, J. A. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin. Proc. Natl Acad. Sci. USA 89, 4466–4470 (1992).
doi: 10.1073/pnas.89.10.4466
Schafer, D. A., Jennings, P. B. & Cooper, J. A. Rapid and efficient purification of actin from nonmuscle sources. Cell Motil. Cytoskeleton 39, 166–171 (1998).
doi: 10.1002/(SICI)1097-0169(1998)39:2<166::AID-CM7>3.0.CO;2-4
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 59, 228–234 (2003).
doi: 10.1107/S0108767303005488
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Hansen, S. D., Zuchero, J. B. & Mullins, R. D. Cytoplasmic actin: purification and single molecule assembly assays. Methods Mol. Biol. 1046, 145–170 (2013).
doi: 10.1007/978-1-62703-538-5_9
Yao, X., Nguyen, V., Wriggers, W. & Rubenstein, P. A. Regulation of yeast actin behavior by interaction of charged residues across the interdomain cleft. J. Biol. Chem. 277, 22875–22882 (2002).
doi: 10.1074/jbc.M201685200
Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).
doi: 10.1007/s00335-012-9422-2
Le, A., Ng, A., Kwan, T., Cusmano-Ozog, K. & Cowan, T. M. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 944, 166–174 (2014).
doi: 10.1016/j.jchromb.2013.11.017
Adhikari, A. S. et al. Early-onset hypertrophic cardiomyopathy mutations significantly increase the velocity, force, and actin-activated atpase activity of human β-cardiac myosin. Cell Rep. 17, 2857–2864 (2016).
doi: 10.1016/j.celrep.2016.11.040
Sommese, R. F. et al. Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function. Proc. Natl Acad. Sci. USA 110, 12607–12612 (2013).
doi: 10.1073/pnas.1309493110
Liu, C., Kawana, M., Song, D., Ruppel, K. M. & Spudich, J. A. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat. Struct. Mol. Biol. 25, 505–514 (2018).
doi: 10.1038/s41594-018-0069-x
Kron, S. J., Toyoshima, Y. Y., Uyeda, T. Q. & Spudich, J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 196, 399–416 (1991).
doi: 10.1016/0076-6879(91)96035-P
Nag, S. et al. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. Sci. Adv. 1, e1500511 (2015).
doi: 10.1126/sciadv.1500511
Kawana, M., Sarkar, S. S., Sutton, S., Ruppel, K. M. & Spudich, J. A. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Sci. Adv. 3, e1601959 (2017).
doi: 10.1126/sciadv.1601959
Mortensen, K. I., Sung, J., Flyvbjerg, H. & Spudich, J. A. Optimized measurements of separations and angles between intra-molecular fluorescent markers. Nat. Commun. 6, 8621 (2015).
doi: 10.1038/ncomms9621
Aksel, T., Choe Yu, E., Sutton, S., Ruppel, K. M. & Spudich, J. A. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep. 11, 910–920 (2015).
doi: 10.1016/j.celrep.2015.04.006
Trybus, K. M. Biochemical studies of myosin. Methods 22, 327–335 (2000).
doi: 10.1006/meth.2000.1085