Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
01 2019
Historique:
received: 11 12 2017
accepted: 04 10 2018
entrez: 9 1 2019
pubmed: 9 1 2019
medline: 11 5 2019
Statut: ppublish

Résumé

Diagnostic procedures, therapeutic recommendations, and medical risk stratifications are based on dedicated, strictly controlled clinical trials. However, a plethora of real-world medical data exists, whereupon the increase in data volume comes at the expense of completeness, uniformity, and control. Here, a case-by-case comparison shows that the predictive power of our real world data-based model for diabetes-related chronic kidney disease outperforms published algorithms, which were derived from clinical study data.

Identifiants

pubmed: 30617317
doi: 10.1038/s41591-018-0239-8
pii: 10.1038/s41591-018-0239-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

57-59

Références

Trojano, M. et al. Nat. Rev. Neurol. 13, 105–118 (2017).
doi: 10.1038/nrneurol.2016.188
Marx, V. Nature 498, 255–260 (2013).
doi: 10.1038/498255a
Bender, E. Nature 527, S19 (2015).
doi: 10.1038/527S19a
Wu, X. et al. IEEE Trans. Knowl. Data Eng. 26, 97–107 (2014).
doi: 10.1109/TKDE.2013.2297923
Frieden, T. R. N. Engl. J. Med. 377, 465–475 (2017).
doi: 10.1056/NEJMra1614394
Bates, D. W. et al. Health Aff. 33, 1123–1131 (2014).
doi: 10.1377/hlthaff.2014.0041
Razavian, N. et al. Big Data 3, 277–287 (2015).
doi: 10.1089/big.2015.0020
Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Sci. Rep. 6, 26094 (2016).
doi: 10.1038/srep26094
Levin, A. et al. Lancet 390, 1888–1917 (2017).
doi: 10.1016/S0140-6736(17)30788-2
Fioretto, P., Dodson, P. M., Ziegler, D. & Rosenson, R. S. Nat. Rev. Endocrinol. 6, 19–25 (2010).
doi: 10.1038/nrendo.2009.213
Wanner, C. et al. N. Engl. J. Med. 375, 323–334 (2016).
doi: 10.1056/NEJMoa1515920
Kaelber, D. C. et al. J. Am. Med. Inform. Assoc. 19, 965–972 (2012).
doi: 10.1136/amiajnl-2011-000782
Hosmer, Jr., D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression 3rd edn (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013).
Vossen, P. Science 357, 22–27 (2017).
doi: 10.1126/science.357.6346.22
McDonald, C. J. et al. Health Aff. 24, 1214–1220 (2005).
doi: 10.1377/hlthaff.24.5.1214
Swets, J. A. Science 240, 1285–1293 (1988).
doi: 10.1126/science.3287615
Bradley, A. P. Patt. Recogn. 30, 1145–1159 (1997).
doi: 10.1016/S0031-3203(96)00142-2
The Diabetes Control and Complications Trial Research Group N. Engl. J. Med. 329, 977–986 (1993).
doi: 10.1056/NEJM199309303291401
Dunkler, D. et al. Clin. J. Am. Soc. Nephrol. 10, 1371–1379 (2015).
doi: 10.2215/CJN.10321014
Vergouwe, Y. et al. Diabetologia 53, 254–262 (2010).
doi: 10.1007/s00125-009-1585-3
Keane, W. F. et al. Clin. J. Am. Soc. Nephrol. 1, 761–767 (2006).
doi: 10.2215/CJN.01381005
Jardine, M. J. et al. Am. J. Kidn. Dis. 60, 770–778 (2012).
doi: 10.1053/j.ajkd.2012.04.025
Liaw, A. & Wiener, M. R News 2, 18–22 (2002).
Unger, J. & Schwartz, Z. Diabetes Management in Primary Care 2nd edn (Lippincott Williams & Wilkens, Philadelphia, 2013).
Glassock, R. J., Warnock, D. G. & Delanaye, P. Nat. Rev. Nephrol. 13, 104–114 (2017).
doi: 10.1038/nrneph.2016.163
GBD 2015 Mortality and Causes of Death Collaborators. Lancet 388, 1459–1544 (2016).
Platinga, L. C., Tuot, D. S. & Powe, N. R. Adv. Chron. Kidn. Dis. 17, 225–236 (2010).
doi: 10.1053/j.ackd.2010.03.002
Bursac, Z. et al. Source Code Biol. Med. 3, 17 (2008).
doi: 10.1186/1751-0473-3-17
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, New York, 2009).
Van Rijsbergen, C. J. Information Retrieval (Butterworth-Heinemann, Newton, MA, USA, 1979).
Wasserstein, R. L. & Lazar, N. A. The ASA’s statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).
doi: 10.1080/00031305.2016.1154108
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).
doi: 10.1186/1471-2105-12-77
Carpenter, J. & Bithell, J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19, 1141–1164 (2000).
doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F

Auteurs

Stefan Ravizza (S)

IBM Switzerland Ltd., Zurich, Switzerland.

Tony Huschto (T)

Roche Diabetes Care GmbH, Mannheim, Germany.

Anja Adamov (A)

IBM Switzerland Ltd., Zurich, Switzerland.

Lars Böhm (L)

IBM Switzerland Ltd., Zurich, Switzerland.

Alexander Büsser (A)

IBM Switzerland Ltd., Zurich, Switzerland.

Frederik F Flöther (FF)

IBM Switzerland Ltd., Zurich, Switzerland.

Rolf Hinzmann (R)

Roche Diabetes Care GmbH, Mannheim, Germany.

Helena König (H)

Roche Diabetes Care GmbH, Mannheim, Germany.

Scott M McAhren (SM)

Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA.

Daniel H Robertson (DH)

Indiana Biosciences Research Institute, Indianapolis, IN, USA.

Titus Schleyer (T)

Regenstrief Institute, Inc., Indianapolis, IN, USA.

Bernd Schneidinger (B)

Roche Diabetes Care GmbH, Mannheim, Germany.

Wolfgang Petrich (W)

Roche Diabetes Care GmbH, Mannheim, Germany. wolfgang.petrich@roche.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH