Alterations in oscillatory cortical activity indicate changes in mnemonic processing during continuous item recognition.
Cross-frequency coupling
EEG
Oscillations
Working memory
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
18
07
2018
accepted:
18
11
2018
pubmed:
30
11
2018
medline:
4
6
2019
entrez:
30
11
2018
Statut:
ppublish
Résumé
The classification of repeating stimuli as either old or new is a general mechanism of everyday perception. However, the cortical mechanisms underlying this process are not fully understood. In general, mnemonic processes are thought to rely on changes in oscillatory brain activity across several frequencies as well as their interaction. Lower frequencies, mainly theta-band (3-7 Hz) and alpha-band (8-14 Hz) activity, are attributed to executive control and resource management, respectively; whereas recent studies revealed higher frequencies, e.g. gamma-band (> 25 Hz) activity, to reflect the activation of cortical object representations. Furthermore, low-frequency phase to high-frequency amplitude coupling (PAC) was recently found to coordinate the involved mnemonic networks. To further unravel the processes behind memorization of repeatedly presented stimuli, we applied a continuous item recognition task with up to five presentations per item (mean time between repetitions ~ 10 s) while recording high-density EEG. We examined spectral amplitude modulations as well as PAC. We observed theta amplitudes reaching a peak at second presentation, a reduction of alpha suppression after second presentation, decreased response time, as well as reduced theta-gamma PAC (3 to 7 to - 30 to 45 Hz) at frontal sites after third presentation. We conclude a shift from an explicit- to an implicit-like mnemonic processing, occurring around third presentation, with theta power to signify encoding of repetition-based episodic information and PAC as a neural correlate of the coordination of local neural networks.
Identifiants
pubmed: 30488235
doi: 10.1007/s00221-018-5439-4
pii: 10.1007/s00221-018-5439-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
573-583Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : GR2684/5-1
Références
Trends Cogn Sci. 1999 Apr;3(4):151-162
pubmed: 10322469
Neuropsychologia. 1999 Jun;37(7):771-85
pubmed: 10408645
Clin Neurophysiol. 2000 May;111(5):781-93
pubmed: 10802447
Int J Psychophysiol. 2000 Dec 1;38(3):211-23
pubmed: 11102663
Int J Psychophysiol. 2002 Nov;46(2):91-100
pubmed: 12433386
J Neurosci. 2003 Nov 26;23(34):10809-14
pubmed: 14645473
Neurosci Lett. 2004 Jan 9;354(2):123-6
pubmed: 14698454
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
Neuroreport. 2004 Aug 6;15(11):1837-41
pubmed: 15257158
Behav Brain Sci. 2003 Dec;26(6):709-28; discussion 728-77
pubmed: 15377128
Int J Psychophysiol. 2005 Aug;57(2):97-103
pubmed: 15967528
Hippocampus. 2005;15(7):890-900
pubmed: 16114010
Brain Res. 2006 Jun 30;1097(1):194-204
pubmed: 16729980
Neuroimage. 2006 Sep;32(3):1422-31
pubmed: 16814568
J Neurosci. 2006 Jul 12;26(28):7523-31
pubmed: 16837600
Neuroimage. 2006 Aug 15;32(2):978-87
pubmed: 16843012
Brain Res Rev. 2007 Jan;53(1):63-88
pubmed: 16887192
Science. 2006 Sep 15;313(5793):1626-8
pubmed: 16973878
J Cogn Neurosci. 2006 Nov;18(11):1850-62
pubmed: 17069476
Psychol Rev. 2007 Jan;114(1):152-76
pubmed: 17227185
J Neurosci. 2007 Mar 21;27(12):3244-51
pubmed: 17376984
Trends Cogn Sci. 2007 Jun;11(6):251-7
pubmed: 17481940
Trends Neurosci. 2007 Jul;30(7):317-24
pubmed: 17499860
Trends Cogn Sci. 2007 Jul;11(7):267-9
pubmed: 17548233
Trends Neurosci. 2007 Jul;30(7):309-16
pubmed: 17555828
J Cogn Neurosci. 2008 Jun;20(6):1043-53
pubmed: 18211247
J Neurosci Methods. 2008 May 30;170(2):352-7
pubmed: 18328571
Prog Brain Res. 2008;169:323-38
pubmed: 18394484
Hippocampus. 2008;18(9):945-54
pubmed: 18493928
Hippocampus. 2008;18(10):975-80
pubmed: 18548578
Anxiety Stress Coping. 2009 Mar;22(2):201-13
pubmed: 18785033
J Cogn Neurosci. 2009 Dec;21(12):2287-99
pubmed: 18855554
Cereb Cortex. 2009 Jul;19(7):1631-40
pubmed: 19001457
Neuron. 2008 Nov 26;60(4):683-97
pubmed: 19038224
Neurosci Biobehav Rev. 2010 Jun;34(7):1015-22
pubmed: 20006645
Neurosci Biobehav Rev. 2010 Jun;34(7):1023-35
pubmed: 20060015
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
pubmed: 20133762
Curr Opin Neurobiol. 2010 Apr;20(2):150-5
pubmed: 20303255
J Neurophysiol. 2010 Aug;104(2):1195-210
pubmed: 20463205
J Neurosci Methods. 2010 Sep 30;192(1):152-62
pubmed: 20654646
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
Front Hum Neurosci. 2010 Nov 04;4:186
pubmed: 21119777
Neuroimage. 2011 Aug 15;57(4):1411-21
pubmed: 21645624
Neuroimage. 2012 Jan 2;59(1):861-71
pubmed: 21835246
J Cogn Neurosci. 2012 Jan;24(1):61-79
pubmed: 21955164
Neuroreport. 2012 Sep 12;23(13):757-61
pubmed: 22850486
Science. 1990 Jan 19;247(4940):301-6
pubmed: 2296719
Neuroimage. 2013 Feb 1;66:642-7
pubmed: 23142278
J Cogn Neurosci. 2013 Jan;25(1):127-42
pubmed: 23198894
Neuron. 2013 Mar 20;77(6):1002-16
pubmed: 23522038
Eur J Neurosci. 2013 Aug;38(3):2425-33
pubmed: 23675819
Neuroimage. 2014 Jan 15;85 Pt 2:648-55
pubmed: 23769913
Trends Cogn Sci. 2014 Jan;18(1):16-25
pubmed: 24268290
Brain Res. 2014 Aug 19;1577:57-68
pubmed: 24978601
Psychophysiology. 2016 Apr;53(4):553-65
pubmed: 26636986
Nat Neurosci. 2016 Oct;19(10):1374-80
pubmed: 27571010
J Neurosci. 2017 Jan 11;37(2):313-322
pubmed: 28077711
Trends Cogn Sci. 2017 Oct;21(10):794-815
pubmed: 28774684
Sci Rep. 2017 Oct 3;7(1):12585
pubmed: 28974716
NPJ Sci Learn. 2017;2:
pubmed: 30294452
J Exp Psychol Learn Mem Cogn. 1985 Jul;11(3):501-18
pubmed: 3160813
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Cereb Cortex. 1997 Jun;7(4):374-85
pubmed: 9177767
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7092-6
pubmed: 9618544
Curr Opin Neurobiol. 1998 Apr;8(2):227-33
pubmed: 9635206