A New Standard DNA Damage (SDD) Data Format.
Journal
Radiation research
ISSN: 1938-5404
Titre abrégé: Radiat Res
Pays: United States
ID NLM: 0401245
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
pubmed:
9
11
2018
medline:
6
4
2019
entrez:
9
11
2018
Statut:
ppublish
Résumé
Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.
Identifiants
pubmed: 30407901
pii: 10.1667/RR15209.1
doi: 10.1667/RR15209.1
pmc: PMC6407706
mid: NIHMS1008768
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
76-92Subventions
Organisme : NCI NIH HHS
ID : R01 CA187003
Pays : United States
Organisme : NCI NIH HHS
ID : U19 CA021239
Pays : United States
Références
Phys Med Biol. 2000 Nov;45(11):3319-30
pubmed: 11098906
Radiat Res. 2001 May;155(5):703-15
pubmed: 11302768
Adv Space Res. 1989;9(10):15-20
pubmed: 11537287
Radiat Res. 2001 Nov;156(5 Pt 2):577-83
pubmed: 11604075
Radiat Res. 2004 Apr;161(4):451-7
pubmed: 15038766
Radiat Environ Biophys. 2004 May;43(1):23-33
pubmed: 15042380
Phys Med Biol. 2004 Jul 7;49(13):2811-25
pubmed: 15285249
Radiat Res. 2005 Aug;164(2):180-93
pubmed: 16038589
Radiat Res. 2005 Aug;164(2):194-201
pubmed: 16038590
Phys Med Biol. 2006 Apr 7;51(7):1693-706
pubmed: 16552098
Int J Radiat Biol. 1991 Mar;59(3):625-42
pubmed: 1672353
Int J Radiat Biol. 2007 Jan;83(1):27-39
pubmed: 17357437
Nucleic Acids Res. 2007;35(17):5755-62
pubmed: 17717001
Biochem Biophys Res Commun. 2008 May 9;369(3):982-8
pubmed: 18054777
Radiat Res. 2008 Apr;169(4):447-59
pubmed: 18363426
Int J Radiat Oncol Biol Phys. 2008 Jul 1;71(3):866-72
pubmed: 18430521
Int J Radiat Biol. 2008 Nov;84(11):916-29
pubmed: 19016140
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011909
pubmed: 19257071
Radiat Environ Biophys. 2010 Nov;49(4):693-703
pubmed: 20574841
Med Phys. 2010 Sep;37(9):4692-708
pubmed: 20964188
Phys Med Biol. 2010 Nov 21;55(22):6721-37
pubmed: 21030747
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051915
pubmed: 21230508
Mutat Res. 2011 Jun 3;711(1-2):28-40
pubmed: 21281649
J Theor Biol. 2011 Aug 21;283(1):122-35
pubmed: 21635903
Radiat Res. 2011 Nov;176(5):587-602
pubmed: 21823972
Int J Radiat Biol. 2012 Jan;88(1-2):87-97
pubmed: 22081899
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):442-50
pubmed: 22099045
Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):250-6
pubmed: 22285663
Acta Oncol. 2013 Apr;52(3):580-8
pubmed: 22909391
J Comput Chem. 2012 Nov 15;33(30):2412-39
pubmed: 22965786
Radiat Res. 2013 May;179(5):540-8
pubmed: 23560631
Radiat Res. 2013 May;179(5):530-9
pubmed: 23560635
Radiat Res. 2013 Jul;180(1):100-9
pubmed: 23682596
Radiat Res. 2013 Nov;180(5):524-38
pubmed: 24138482
PLoS One. 2014 Feb 10;9(2):e85816
pubmed: 24520318
Sci Transl Med. 2014 Jul 16;6(245):245ra93
pubmed: 25031268
Int J Radiat Biol. 1989 Apr;55(4):513-29
pubmed: 2564863
Int J Radiat Biol. 1989 Jul;56(1):1-19
pubmed: 2569005
Phys Med Biol. 2015 Apr 21;60(8):3271-86
pubmed: 25826534
Radiat Prot Dosimetry. 2015 Sep;166(1-4):19-23
pubmed: 25870431
Radiat Prot Dosimetry. 2015 Sep;166(1-4):66-70
pubmed: 25877535
Radiat Prot Dosimetry. 2015 Sep;166(1-4):75-9
pubmed: 25877543
PLoS One. 2015 Jun 11;10(6):e0129416
pubmed: 26067661
Cancer Radiother. 2015 Oct;19(6-7):526-31
pubmed: 26277238
Phys Med Biol. 2015 Nov 7;60(21):8249-74
pubmed: 26449929
Phys Med Biol. 2015 Nov 7;60(21):8399-416
pubmed: 26459756
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):557-68
pubmed: 26460998
Phys Med Biol. 2015 Nov 7;60(21):8583-99
pubmed: 26501434
Phys Med. 2015 Dec;31(8):861-874
pubmed: 26653251
Sci Rep. 2016 Jun 14;6:27654
pubmed: 27297618
Phys Med Biol. 1989 Jun;34(6):691-705
pubmed: 2740437
Sci Rep. 2016 Sep 14;6:33290
pubmed: 27624453
Rep Prog Phys. 2016 Nov;79(11):116601
pubmed: 27652826
Sci Rep. 2016 Sep 22;6:34033
pubmed: 27654349
Phys Med. 2016 Oct;32(10):1187-1200
pubmed: 27659007
Phys Med. 2017 Jan;33:207-215
pubmed: 28017738
Sci Rep. 2017 Mar 27;7:45161
pubmed: 28345622
Nanoscale. 2017 May 11;9(18):5843-5853
pubmed: 28429022
Radiat Res. 2017 Sep;188(3):355-368
pubmed: 28650774
Radiat Res. 2017 Dec;188(6):690-703
pubmed: 28792846
DNA Repair (Amst). 2017 Oct;58:38-46
pubmed: 28863396
Sci Rep. 2017 Sep 7;7(1):10790
pubmed: 28883414
Sci Rep. 2017 Sep 20;7(1):11923
pubmed: 28931851
Phys Med Biol. 2017 Nov 21;62(24):9260-9281
pubmed: 29053105
Phys Med. 2017 Nov;43:120-126
pubmed: 29195554
Phys Med. 2018 Apr;48:146-155
pubmed: 29371062
Sci Rep. 2018 Feb 8;8(1):2654
pubmed: 29422642
Phys Med Biol. 2018 Mar 26;63(7):075007
pubmed: 29508768
Radiat Res. 2018 Jun;189(6):597-604
pubmed: 29624483
Phys Med. 2018 Apr;48:135-145
pubmed: 29628360
Phys Med Biol. 2018 May 17;63(10):105014
pubmed: 29697057
Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Apr;51(4):573-89
pubmed: 3034813
Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Mar;53(3):353-65
pubmed: 3257951
Radiat Environ Biophys. 1980 Feb;17(2):95-113
pubmed: 6768098
Phys Med Biol. 1983 May;28(5):485-92
pubmed: 6867109
Radiat Res. 1994 Dec;140(3):366-74
pubmed: 7972689
Int J Radiat Biol. 1997 May;71(5):467-83
pubmed: 9191891
Radiat Res. 1998 Aug;150(2):170-82
pubmed: 9692362