Identification of 12 novel loci that confer susceptibility to early-onset dyslipidemia.
Age of Onset
Aged
Case-Control Studies
Cholesterol, HDL
/ blood
Cholesterol, LDL
/ blood
Chromosomes, Human
/ genetics
Dyslipidemias
/ blood
Female
Gene Regulatory Networks
Genetic Loci
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Hypertriglyceridemia
/ genetics
Linkage Disequilibrium
/ genetics
Logistic Models
Male
Middle Aged
Multivariate Analysis
Phenotype
Polymorphism, Single Nucleotide
/ genetics
Triglycerides
/ blood
Journal
International journal of molecular medicine
ISSN: 1791-244X
Titre abrégé: Int J Mol Med
Pays: Greece
ID NLM: 9810955
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
26
04
2018
accepted:
26
09
2018
pubmed:
27
10
2018
medline:
1
3
2019
entrez:
27
10
2018
Statut:
ppublish
Résumé
The circulating concentrations of triglycerides, high density lipoprotein (HDL)‑cholesterol, and low density lipoprotein (LDL)‑cholesterol have a substantial genetic component, and the heritability of early‑onset dyslipidemia might be expected to be higher compared with late‑onset forms. In the present study, exome‑wide association studies (EWASs) were performed for early‑onset hypertriglyceridemia, hypo‑HDL‑cholesterolemia, and hyper‑LDL‑cholesterolemia, with the aim to identify genetic variants that confer susceptibility to these conditions in the Japanese population. A total of 8,073 individuals aged ≤65 years were enrolled in the study. The EWASs for hypertriglyceridemia (2,664 cases and 5,294 controls), hypo‑HDL‑cholesterolemia (974 cases and 7,085 controls), and hyper‑LDL‑cholesterolemia (2,911 cases and 5,111 controls) were performed with Illumina Human Exome‑12 v1.2 DNA Analysis BeadChip or Infinium Exome‑24 v1.0 BeadChip arrays. The association of allele frequencies for 31,198, 31,133, or 31,175 single nucleotide polymorphisms (SNPs) to hypertriglyceridemia, hypo‑HDL‑cholesterolemia, or hyper‑LDL‑cholesterolemia, respectively, was examined with Fisher's exact test. To compensate for multiple comparisons of genotypes with each of the three conditions, Bonferroni's correction was applied for statistical significance of association. The results demonstrated that 25, 28 and 65 SNPs were significantly associated with hypertriglyceridemia, hypo‑HDL‑cholesterolemia and hyper‑LDL‑cholesterolemia, respectively. Multivariable logistic regression analysis with adjustment for age and sex revealed that all 25, 28 and 65 of these SNPs were significantly associated with hypertriglyceridemia, hypo‑HDL‑cholesterolemia and hyper‑LDL‑cholesterolemia, respectively. Following examination of the association of the identified SNPs to serum concentrations of triglycerides, HDL‑cholesterol, or LDL‑cholesterol, linkage disequilibrium of the SNPs, and results of previous genome‑wide association studies, we newly identified chromosomal region 19p12 as a susceptibility locus for hypertriglyceridemia, eight loci (MOB3C‑TMOD4, LPGAT1, EHD3, COL6A3, ZNF860‑CACNA1D, COL6A5, DCLRE1C, ZNF77) for hypo‑HDL‑cholesterolemia, and three loci (KIAA0319‑FAM65B, UBD, LOC105375015) for hyper‑LDL‑cholesterolemia. The present study thus identified 12 novel loci that may confer susceptibility to early‑onset dyslipidemia. Determination of genotypes for the SNPs at these loci may prove informative for assessment of genetic risk for hypertriglyceridemia, hypo‑HDL‑cholesterolemia, or hyper‑LDL‑cholesterolemia in the Japanese population.
Identifiants
pubmed: 30365130
doi: 10.3892/ijmm.2018.3943
pmc: PMC6257857
doi:
Substances chimiques
Cholesterol, HDL
0
Cholesterol, LDL
0
Triglycerides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
57-82Références
Nat Genet. 2008 Feb;40(2):189-97
pubmed: 18193044
Database (Oxford). 2015 Apr 15;2015:bav028
pubmed: 25877637
Bioinformatics. 2010 Nov 15;26(22):2927-8
pubmed: 20926419
Nat Genet. 2006 Aug;38(8):904-9
pubmed: 16862161
Nat Protoc. 2010 Sep;5(9):1564-73
pubmed: 21085122
Sci Rep. 2018 Feb 21;8(1):3434
pubmed: 29467471
Cancer Causes Control. 2015 Feb;26(2):257-268
pubmed: 25488827
Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839
pubmed: 27924018
Nat Genet. 2016 Jun;48(6):634-9
pubmed: 27135400
Am J Hum Genet. 2012 Nov 2;91(5):823-38
pubmed: 23063622
Hum Mol Genet. 2017 May 1;26(9):1770-1784
pubmed: 28334899
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Curr Atheroscler Rep. 2017 Jul;19(7):31
pubmed: 28534127
Am J Hum Genet. 2014 Feb 6;94(2):223-32
pubmed: 24507774
Nat Clin Pract Cardiovasc Med. 2007 Apr;4(4):214-25
pubmed: 17380167
Nat Genet. 2018 Mar;50(3):401-413
pubmed: 29507422
Int J Mol Med. 2015 May;35(5):1189-98
pubmed: 25813534
Nucleic Acids Res. 2015 Jan;43(Database issue):D799-804
pubmed: 25428361
Lancet. 2003 Aug 30;362(9385):717-31
pubmed: 12957096
Oncotarget. 2017 Jun 13;8(24):38950-38961
pubmed: 28473662
Nature. 2010 Aug 5;466(7307):707-13
pubmed: 20686565
Bioinformatics. 2014 Jun 15;30(12):i185-94
pubmed: 24931982
Nat Genet. 2015 Jun;47(6):589-97
pubmed: 25961943
F1000Res. 2014 Jul 01;3:153
pubmed: 25254104
N Engl J Med. 1993 Apr 22;328(16):1150-6
pubmed: 8455681
Nat Genet. 2009 Jan;41(1):47-55
pubmed: 19060911
PLoS One. 2013 Jul 12;8(7):e68095
pubmed: 23874508
Circulation. 2018 Mar 20;137(12):e67-e492
pubmed: 29386200
Am J Hum Genet. 2014 Feb 6;94(2):233-45
pubmed: 24507775
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20
pubmed: 20576703
Nat Genet. 2017 Dec;49(12):1722-1730
pubmed: 29083407
J Lipid Res. 2013 Oct;54(10):2914-23
pubmed: 23918046
Nat Genet. 2017 Dec;49(12):1758-1766
pubmed: 29083408
J Hum Genet. 2016 May;61(5):427-33
pubmed: 26763881
Am J Hum Genet. 2001 May;68(5):1302-7
pubmed: 11309690
Nat Genet. 2009 Jan;41(1):56-65
pubmed: 19060906
Nat Genet. 2013 Nov;45(11):1274-1283
pubmed: 24097068
BMJ. 2003 Jun 28;326(7404):1423
pubmed: 12829554
J Lipid Res. 2014 Jul;55(7):1515-24
pubmed: 24859784
Cancer Epidemiol. 2014 Apr;38(2):144-51
pubmed: 24636241
Lipids Health Dis. 2017 Jun 2;16(1):103
pubmed: 28577571