Disconnected and Hyperactive: A Replication of Sensorimotor Cortex Abnormalities in Patients With Schizophrenia During Proactive Response Inhibition.
connectivity
fMRI
motor
response inhibition
Journal
Schizophrenia bulletin
ISSN: 1745-1701
Titre abrégé: Schizophr Bull
Pays: United States
ID NLM: 0236760
Informations de publication
Date de publication:
25 04 2019
25 04 2019
Historique:
pubmed:
26
6
2018
medline:
21
4
2020
entrez:
26
6
2018
Statut:
ppublish
Résumé
Inhibitory failure represents a core dysfunction in patients with schizophrenia (SP), which has predominantly been tested in the literature using reactive (ie, altering behavior after a stimulus) rather than proactive (ie, purposefully changing behavior before a stimulus) response inhibition tasks. The current study replicates/extends our previous findings of SP exhibiting sensorimotor cortex (SMC) hyperactivity and connectivity abnormalities in independent samples of patients and controls. Specifically, 49 clinically well-characterized SP and 54 matched healthy controls (HC) performed a proactive response inhibition task while undergoing functional magnetic resonance imaging and resting-state data collection. Results indicated that the majority of SP (84%) and HC (88%) successfully inhibited all overt motor responses following a cue, eliminating behavioral confounds frequently present in this population. Observations of left SMC hyperactivity during proactive response inhibition, reduced cortical connectivity with left SMC, and increased connectivity between left SMC and ventrolateral thalamus were replicated for SP relative to HC in the current study. Similarly, negative symptoms (eg, motor retardation) were again associated with SMC functional and connectivity abnormalities. In contrast, findings of a negative blood oxygenation level-dependent response in the SMC of HC did not replicate. Collectively, current and previous findings suggest that SMC connectivity abnormalities may be more robust relative to evoked hemodynamic signals during proactive response inhibition. In addition, there is strong support that these SMC abnormalities are a key component of SP pathology, along with dysfunction within other sensory cortices, and may be associated with certain clinical deficits such as negative symptoms.
Identifiants
pubmed: 29939338
pii: 5043254
doi: 10.1093/schbul/sby086
pmc: PMC6483571
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
552-561Subventions
Organisme : NIGMS NIH HHS
ID : P20 GM109089
Pays : United States
Informations de copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
Biol Psychol. 2012 Jan;89(1):220-31
pubmed: 22027085
Biol Psychiatry. 1999 Jan 1;45(1):17-25
pubmed: 9894571
Brain Res. 2011 Jan 25;1370:194-203
pubmed: 21059348
Biol Psychiatry. 2011 Dec 15;70(12):1151-8
pubmed: 21903198
Neuropsychology. 2006 Sep;20(5):497-510
pubmed: 16938013
Biol Psychiatry. 2004 Nov 1;56(9):628-33
pubmed: 15522245
Hum Brain Mapp. 2012 Dec;33(12):2843-55
pubmed: 21976411
J Neurophysiol. 2013 Feb;109(3):659-65
pubmed: 23136342
Brain Res Cogn Brain Res. 2003 Jul;17(2):419-30
pubmed: 12880912
Hum Brain Mapp. 2017 Sep;38(9):4535-4545
pubmed: 28603856
JAMA Psychiatry. 2015 Sep;72(9):882-91
pubmed: 26267151
Hum Brain Mapp. 2016 Feb;37(2):745-55
pubmed: 26598791
Am J Psychiatry. 2010 Jun;167(6):686-93
pubmed: 20360319
Science. 2015 Aug 28;349(6251):aac4716
pubmed: 26315443
J Neurosci. 2011 Jun 15;31(24):8812-21
pubmed: 21677165
Brain Cogn. 2015 Apr;95:90-8
pubmed: 25769133
Neurosci Biobehav Rev. 2013 Jan;37(1):11-23
pubmed: 23164813
Neuroimage Clin. 2014 Jul 24;5:298-308
pubmed: 25161896
Neuropsychologia. 2008 Jan 15;46(1):224-32
pubmed: 17850833
Exp Brain Res. 1995;104(3):527-33
pubmed: 7589304
Schizophr Res. 2011 Oct;132(1):62-8
pubmed: 21831602
J Mot Behav. 2012;44(6):455-69
pubmed: 23237468
Schizophr Res. 2013 May;146(1-3):231-7
pubmed: 23478155
Biol Psychiatry. 1999 Sep 1;46(5):616-26
pubmed: 10472415
Schizophr Res. 2009 Sep;113(2-3):189-99
pubmed: 19628375
Schizophr Bull. 2018 Feb 15;44(2):419-431
pubmed: 28605528
Cereb Cortex. 2014 Dec;24(12):3116-30
pubmed: 23825317
Neuroimage Clin. 2013 Apr 22;2:590-9
pubmed: 24179809
Front Hum Neurosci. 2010 Apr 26;4:32
pubmed: 20461148
Neuroimage. 2017 Feb 15;147:243-252
pubmed: 27916665
Schizophr Res. 2004 Nov 1;71(1):17-26
pubmed: 15374568
Am J Psychiatry. 2012 Oct;169(10):1092-9
pubmed: 23032387
J Psychiatry Neurosci. 2016 Aug;41(5):312-21
pubmed: 26883319
Neuroimage. 2003 Oct;20(2):870-88
pubmed: 14568458
Schizophr Bull. 2017 Sep 1;43(5):982-992
pubmed: 28911049
Neuroimage. 2014 Aug 15;97:117-26
pubmed: 24736181
JAMA Psychiatry. 2017 Jun 1;74(6):605-613
pubmed: 28467520
Comput Biomed Res. 1996 Jun;29(3):162-73
pubmed: 8812068
Nat Rev Neurosci. 2006 Feb;7(2):160-6
pubmed: 16429125
Brain Imaging Behav. 2018 Jun;12(3):640-652
pubmed: 28444556
Neuroimage. 2004;23 Suppl 1:S208-19
pubmed: 15501092
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3019-20
pubmed: 17360600
Schizophr Res. 2001 Oct 1;52(1-2):47-55
pubmed: 11595391
Neuroimage. 2011 Jun 1;56(3):1655-65
pubmed: 21376819
Schizophr Bull. 2015 Nov;41(6):1326-35
pubmed: 25943122
NPJ Schizophr. 2015 May 06;1:15016
pubmed: 27336032
Nat Neurosci. 2006 Apr;9(4):569-77
pubmed: 16547508
Schizophr Res. 2007 Dec;97(1-3):184-93
pubmed: 17855057
J Neurosci. 2010 Mar 24;30(12):4285-94
pubmed: 20335464
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13636-41
pubmed: 23898206
Hum Brain Mapp. 2013 Sep;34(9):2302-12
pubmed: 22461278
J Neurophysiol. 2007 Mar;97(3):1880-2
pubmed: 17215499
Learn Mem. 2016 Sep 15;23(10):504-14
pubmed: 27634142
Psychiatry Res. 2002 Feb 15;114(1):11-22
pubmed: 11864806
Neuroimage. 2001 Dec;14(6):1416-23
pubmed: 11707097