New role of P2X7 receptor in an Alzheimer's disease mouse model.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
01 2019
Historique:
received: 09 10 2017
accepted: 05 06 2018
revised: 14 05 2018
pubmed: 24 6 2018
medline: 7 1 2020
entrez: 24 6 2018
Statut: ppublish

Résumé

Extracellular aggregates of amyloid β (Aβ) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1β; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aβ peptides or the neuroprotective fragment sAPPα. We thus explored in detail the functions of P2X7R in AD transgenic mice. Here, we show that P2X7R deficiency reduced Aβ lesions, rescued cognitive deficits and improved synaptic plasticity in AD mice. However, the lack of P2X7R did not significantly affect the release of IL-1β or the levels of non-amyloidogenic fragment, sAPPα, in AD mice. Instead, our results show that P2X7R plays a critical role in Aβ peptide-mediated release of chemokines, particularly CCL3, which is associated with pathogenic CD8

Identifiants

pubmed: 29934546
doi: 10.1038/s41380-018-0108-3
pii: 10.1038/s41380-018-0108-3
pmc: PMC6756107
doi:

Substances chimiques

APP protein, human 0
Amyloid beta-Protein Precursor 0
Cytokines 0
Inflammasomes 0
Interleukin-1beta 0
NLR Family, Pyrin Domain-Containing 3 Protein 0
P2RX7 protein, human 0
P2rx7 protein, mouse 0
Receptors, Purinergic P2X7 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

108-125

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-IAIHU-06
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-IAIHU-06
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-12-MALZ-0003-02-P2X7RAD
Pays : International

Références

Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16:229–36.
doi: 10.1038/ni.3102
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.
doi: 10.1038/nrn3880
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.
doi: 10.1038/ng.439
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–35.
doi: 10.1038/ng.803
Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41.
doi: 10.1038/ng.801
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45:1452–8.
doi: 10.1038/ng.2802
Martin E, Boucher C, Fontaine B, Delarasse C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell. 2016;16:27–38.
doi: 10.1111/acel.12522
Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 2014;8:260.
doi: 10.3389/fncel.2014.00260
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7:575–90.
doi: 10.1038/nrd2605
Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, et al. Activation of microglia by amyloid {beta} requires P2X7 receptor expression. J Immunol. 2009;182:4378–85.
doi: 10.4049/jimmunol.0803612
Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, et al. Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci. 2011;31:4962–77.
doi: 10.1523/JNEUROSCI.6417-10.2011
Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 2012;3:e403.
doi: 10.1038/cddis.2012.144
Baron L, Gombault A, Fanny M, Villeret B, Savigny F, Guillou N, et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6:e1629.
doi: 10.1038/cddis.2014.576
Rodrigues RJ, Tome AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci. 2015;9:148.
doi: 10.3389/fnins.2015.00148
Tewari M, Seth P, Emerging role of P2X7 receptors in CNS health and disease. Ageing Res Rev. 2015;24:328–42.
doi: 10.1016/j.arr.2015.10.001
Volonte C, Apolloni S, Skaper SD, Burnstock G. P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets. 2012;11:705–21.
doi: 10.2174/187152712803581137
Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem. 2003;278:13309–17.
doi: 10.1074/jbc.M209478200
McLarnon JG, Ryu JK, Walker DG, Choi HB. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol. 2006;65:1090–7.
doi: 10.1097/01.jnen.0000240470.97295.d3
Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9:857–65.
doi: 10.1038/ni.1636
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8.
doi: 10.1038/nature11729
Rampe D, Wang L, Ringheim GE. P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol. 2004;147:56–61.
doi: 10.1016/j.jneuroim.2003.10.014
Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, et al. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging. 2012;33:1816–28.
doi: 10.1016/j.neurobiolaging.2011.09.040
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem. 2011;286:2596–606.
doi: 10.1074/jbc.M110.200618
Darmellah A, Rayah A, Auger R, Cuif MH, Prigent M, Arpin M, et al. Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem. 2012;287:34583–95.
doi: 10.1074/jbc.M112.400010
Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997;77:1081–132.
doi: 10.1152/physrev.1997.77.4.1081
Ni J, Wang P, Zhang J, Chen W, Gu L. Silencing of the P2X(7) receptor enhances amyloid-beta phagocytosis by microglia. Biochem Biophys Res Commun. 2013;434:363–9.
doi: 10.1016/j.bbrc.2013.03.079
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7:940–6.
doi: 10.1038/sj.embor.7400784
Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 2001;276:125–32.
doi: 10.1074/jbc.M006781200
Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listi F, Chiappelli M, et al. Age-related inflammatory diseases: role of genetics and gender in the pathophysiology of Alzheimer’s disease. Ann N Y Acad Sci. 2006;1089:472–86.
doi: 10.1196/annals.1386.008
Barnes CA, Suster MS, Shen J, McNaughton BL. Multistability of cognitive maps in the hippocampus of old rats. Nature. 1997;388:272–5.
doi: 10.1038/40859
Brody DL, Holtzman DM. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp Neurol. 2006;197:330–40.
doi: 10.1016/j.expneurol.2005.10.020
Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998;152:307–17.
pubmed: 9422548 pmcid: 1858113
Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE. 2013;8:e60921.
doi: 10.1371/journal.pone.0060921
Metzger MW, Walser SM, Aprile-Garcia F, Dedic N, Chen A, Holsboer F, et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signal. 2017;13:153–70.
doi: 10.1007/s11302-016-9546-z
Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid {beta} associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7.
doi: 10.1073/pnas.0811698106
Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci. 2009;29:3781–91.
doi: 10.1523/JNEUROSCI.5512-08.2009
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
doi: 10.1016/S1474-4422(15)70016-5
Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev. 2005;48:16–42.
doi: 10.1016/j.brainresrev.2004.07.021
Jaerve A, Muller HW. Chemokines in CNS injury and repair. Cell Tissue Res. 2012;349:229–48.
doi: 10.1007/s00441-012-1427-3
Martin E, Boucher C, Fontaine B, Delarasse C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell. 2017;16:27–38.
doi: 10.1111/acel.12522
Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA. 2012;109:E197–205.
doi: 10.1073/pnas.1111098109
Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, et al. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging 2012;33:1816–28.
doi: 10.1016/j.neurobiolaging.2011.09.040
Leon-Otegui M, Gomez-Villafuertes R, Diaz-Hernandez JI, Diaz-Hernandez M, Miras-Portugal MT, Gualix J. Opposite effects of P2X7 and P2Y2 nucleotide receptors on alpha-secretase-dependent APP processing in Neuro-2a cells. FEBS Lett. 2011;585:2255–62.
doi: 10.1016/j.febslet.2011.05.048
Ryu JK, McLarnon JG. Block of purinergic P2X(7) receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport. 2008;19:1715–9.
doi: 10.1097/WNR.0b013e3283179333
Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, et al. Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J. 2009;23:1893–906.
doi: 10.1096/fj.08-122275
Burm SM, Zuiderwijk-Sick EA, Weert PM, Bajramovic JJ. ATP-induced IL-1beta secretion is selectively impaired in microglia as compared to hematopoietic macrophages. Glia. 2016;64:2231–46.
doi: 10.1002/glia.23059
Wiley JS, Gu BJ. A new role for the P2X7 receptor: a scavenger receptor for bacteria and apoptotic cells in the absence of serum and extracellular ATP. Purinergic Signal. 2012;8:579–86.
doi: 10.1007/s11302-012-9308-5
Gu BJ, Duce JA, Valova VA, Wong B, Bush AI, Petrou S, et al. P2X7 receptor-mediated scavenger activity of mononuclear phagocytes toward non-opsonized particles and apoptotic cells is inhibited by serum glycoproteins but remains active in cerebrospinal fluid. J Biol Chem. 2012;287:17318–30.
doi: 10.1074/jbc.M112.340885
Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am J Pathol. 1998;153:31–37.
doi: 10.1016/S0002-9440(10)65542-3
Passos GF, Figueiredo CP, Prediger RD, Pandolfo P, Duarte FS, Medeiros R, et al. Role of the macrophage inflammatory protein-1alpha/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by beta-amyloid peptide. Am J Pathol. 2009;175:1586–97.
doi: 10.2353/ajpath.2009.081113
Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184–200.
doi: 10.1093/brain/aww270
Rostene W, Dansereau MA, Godefroy D, Van Steenwinckel J, Reaux-Le Goazigo A, Melik-Parsadaniantz S, et al. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem. 2011;118:680–94.
doi: 10.1111/j.1471-4159.2011.07371.x
Marciniak E, Faivre E, Dutar P, Alves Pires C, Demeyer D, Caillierez R, et al. The Chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep. 2015;5:15862.
doi: 10.1038/srep15862
Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, et al. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. Elife 2016;5:e20985.
Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, et al. Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging. 2007;28:485–96.
doi: 10.1016/j.neurobiolaging.2006.02.013
Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013;36:315–24.
doi: 10.1016/j.tins.2013.01.008
Laurent C, Burnouf S, Ferry B, Batalha VL, Coelho JE, Baqi Y, et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry. 2016;21:149.
doi: 10.1038/mp.2015.115
Lee S, Xu G, Jay TR, Bhatta S, Kim KW, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538–46.
doi: 10.1523/JNEUROSCI.0853-14.2014
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, et al. Loss of P2Y(2) nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. Mol Neurobiol. 2014;49:1031–42.
doi: 10.1007/s12035-013-8577-5

Auteurs

Elodie Martin (E)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Majid Amar (M)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Carine Dalle (C)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Ihsen Youssef (I)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Céline Boucher (C)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Caroline Le Duigou (C)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Matthias Brückner (M)

Center of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175, Bonn, Germany.

Annick Prigent (A)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Véronique Sazdovitch (V)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France.

Annett Halle (A)

Center of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175, Bonn, Germany.
German Center for Neurodegenerative Diseases, 53127, Bonn, Germany.

Jean M Kanellopoulos (JM)

Institut de Biologie Intégrative, I2BC-CNRS 9198, Department of Biochemistry Biophysics and Structural Biology, Université Paris-Sud, 91405, Orsay, France.

Bertrand Fontaine (B)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France.

Benoît Delatour (B)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.

Cécile Delarasse (C)

Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France. cecile.delarasse@upmc.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH