Spatiotemporal distribution of glia in and around the developing mouse optic tract.
RRID:A-11122
RRID:AB_2224402
RRID:AB_2491179
RRID:AB_2556542
RRID:AB_531793
RRID:SCR_001775
RRID:SCR_002285
RRID:SCR_015807
astrocyte
axon
axon guidance
development
glia
microglia
retinal ganglion cell
visual system
Journal
The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041
Informations de publication
Date de publication:
15 02 2019
15 02 2019
Historique:
received:
15
02
2018
accepted:
21
03
2018
pubmed:
11
5
2018
medline:
20
6
2020
entrez:
11
5
2018
Statut:
ppublish
Résumé
In the developing mouse optic tract, retinal ganglion cell (RGC) axon position is organized by topography and laterality (i.e., eye-specific or ipsi- and contralateral segregation). Our lab previously showed that ipsilaterally projecting RGCs are segregated to the lateral aspect of the developing optic tract and found that ipsilateral axons self-fasciculate to a greater extent than contralaterally projecting RGC axons in vitro. However, the full complement of axon-intrinsic and -extrinsic factors mediating eye-specific segregation in the tract remain poorly understood. Glia, which are known to express several guidance cues in the visual system and regulate the navigation of ipsilateral and contralateral RGC axons at the optic chiasm, are natural candidates for contributing to eye-specific pre-target axon organization. Here, we investigate the spatiotemporal expression patterns of both putative astrocytes (Aldh1l1+ cells) and microglia (Iba1+ cells) in the embryonic and neonatal optic tract. We quantified the localization of ipsilateral RGC axons to the lateral two-thirds of the optic tract and analyzed glia position and distribution relative to eye-specific axon organization. While our results indicate that glial segregation patterns do not strictly align with eye-specific RGC axon segregation in the tract, we identify distinct spatiotemporal organization of both Aldh1l1+ cells and microglia in and around the developing optic tract. These findings inform future research into molecular mechanisms of glial involvement in RGC axon growth and organization in the developing retinogeniculate pathway.
Identifiants
pubmed: 29744881
doi: 10.1002/cne.24462
pmc: PMC6226340
mid: NIHMS965482
doi:
Substances chimiques
Aldehyde Dehydrogenase 1 Family
EC 1.2.1
ALDH1A1 protein, mouse
EC 1.2.1.36
Retinal Dehydrogenase
EC 1.2.1.36
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
508-521Subventions
Organisme : NEI NIH HHS
ID : R01 EY015290
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY012736
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY019007
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM127049
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM105775
Pays : United States
Organisme : NEI NIH HHS
ID : T32 EY013933
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG045842
Pays : United States
Informations de copyright
© 2018 Wiley Periodicals, Inc.
Références
Nat Neurosci. 2016 Mar;19(3):504-16
pubmed: 26780511
J Comp Neurol. 1997 Apr 14;380(3):355-72
pubmed: 9087518
Proc Natl Acad Sci U S A. 1985 Jun;82(11):3906-10
pubmed: 3858851
EMBO J. 2010 Sep 15;29(18):3170-83
pubmed: 20676059
J Neurosci. 2006 Feb 8;26(6):1730-8
pubmed: 16467521
J Comp Neurol. 1990 Aug 1;298(1):113-28
pubmed: 1698826
J Comp Neurol. 1987 Nov 8;265(2):203-17
pubmed: 3693606
Adv Exp Med Biol. 2007;621:156-66
pubmed: 18269218
J Comp Neurol. 1994 Nov 8;349(2):303-24
pubmed: 7860785
J Comp Neurol. 1999 Apr 5;406(2):251-62
pubmed: 10096609
Development. 2014 May;141(9):1875-83
pubmed: 24700820
J Comp Neurol. 1992 Mar 22;317(4):357-78
pubmed: 1578002
Annu Rev Neurosci. 2008;31:295-315
pubmed: 18558857
Eur J Neurosci. 2014 May;39(10):1551-7
pubmed: 24593277
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2714-23
pubmed: 23812756
Proc Natl Acad Sci U S A. 1988 Nov;85(21):8316-20
pubmed: 3186726
Curr Opin Neurobiol. 1997 Oct;7(5):647-53
pubmed: 9384544
Okajimas Folia Anat Jpn. 1970;47(4):229-65
pubmed: 4097513
Neuron. 2012 May 24;74(4):676-90
pubmed: 22632726
Glia. 2013 Sep;61(9):1518-32
pubmed: 23840004
J Comp Neurol. 1989 Jul 8;285(2):231-45
pubmed: 2760263
Annu Rev Neurosci. 2001;24:87-105
pubmed: 11283306
Neuron. 2011 Jul 28;71(2):235-42
pubmed: 21791283
Curr Opin Neurobiol. 2000 Oct;10(5):642-8
pubmed: 11084327
Neuron. 2017 Aug 2;95(3):531-549.e9
pubmed: 28712653
J Neurosci. 2008 Jan 2;28(1):264-78
pubmed: 18171944
J Neurosci. 1997 Feb 1;17(3):1086-100
pubmed: 8994063
Neuron. 1990 Aug;5(2):173-86
pubmed: 2383400
Semin Cell Dev Biol. 2019 Jan;85:48-59
pubmed: 29174916
Glia. 1989;2(1):55-66
pubmed: 2523339
Curr Opin Neurobiol. 2017 Feb;42:1-8
pubmed: 27788368
J Comp Neurol. 2018 May 1;526(7):1077-1096
pubmed: 29322522
J Neurosci. 1986 Feb;6(2):424-38
pubmed: 3512790
Cell Rep. 2014 Sep 11;8(5):1271-9
pubmed: 25159150
Nat Rev Neurosci. 2013 May;14(5):311-21
pubmed: 23595014
J Neurosci. 1994 Nov;14(11 Pt 2):7024-39
pubmed: 7965096
J Comp Neurol. 1984 Dec 20;230(4):552-75
pubmed: 6520251
J Cell Biol. 2013 Nov 11;203(3):395-405
pubmed: 24217617
Neuron. 2003 Sep 11;39(6):919-35
pubmed: 12971893
Science. 2009 Jul 31;325(5940):585-90
pubmed: 19589963
Nature. 2013 Dec 19;504(7480):394-400
pubmed: 24270812
Brain Res Dev Brain Res. 1989 Jan 1;45(1):15-27
pubmed: 2917409
Neuron. 2012 May 24;74(4):691-705
pubmed: 22632727
J Neurosci. 1987 May;7(5):1447-60
pubmed: 3572487